收藏 分享(赏)

八年级全等三角形简单证明题及答案(15道).ppt

上传人:weiwoduzun 文档编号:3841528 上传时间:2018-11-21 格式:PPT 页数:15 大小:608.52KB
下载 相关 举报
八年级全等三角形简单证明题及答案(15道).ppt_第1页
第1页 / 共15页
八年级全等三角形简单证明题及答案(15道).ppt_第2页
第2页 / 共15页
八年级全等三角形简单证明题及答案(15道).ppt_第3页
第3页 / 共15页
八年级全等三角形简单证明题及答案(15道).ppt_第4页
第4页 / 共15页
八年级全等三角形简单证明题及答案(15道).ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、,全等三角形,1.已知:如图,AB=AE,1=2,B=E求证:BC=ED,证明:1=2, 1+BAD=2+BAD, 即:EAD=BAC, 在EAD和BAC中 B=E AB=AE BAC=EAD , ABCAED(ASA), BC=ED,全等三角形的判定与性质,2.如图,在ABC中,C=90,点D是AB边上的一点,DMAB,且DM=AC,过点M作MEBC交AB于点E求证:ABCMED。,证明:MDAB, MDE=C=90, MEBC, B=MED, 在ABC与MED中, B=MED C=EDM DM=AC , ABCMED(AAS),全等三角形的判定,如图,E、F是四边形ABCD的对角线BD上的

2、两点,AECF,AE=CF,BE=DF求证:ADECBF,证明:AECF AED=CFB, DF=BE, DF+EF=BE+EF,即DE=BF, 在ADE和CBF中,AE=CF AED=CFB DE=BF , ADECBF(SAS),全等三角形的判定,5.如图,在ABC中,AB=AC,AD平分BAC求证:DBC=DCB,解:AD平分BAC, BAD=CAD 在ACD和ABD中AB=AC BAD=CAD AD=AD , ACDABD, BD=CD, DBC=DCB,全等三角形的判定与性质,6.已知:如图,点E,A,C在同一直线上,ABCD,AB=CE,AC=CD求证:BC=ED,证明:ABCD,

3、 BAC=ECD, 在BAC和ECD中 AB=EC BAC=ECD AC=CD , BACECD(SAS), CB=ED,全等三角形的判定与性质,7.如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE求证:B=C,在ABE和ACD中, AB=AC A=A AE=AD , ABEACD(SAS), B=C,全等三角形的判定与性质,8.已知AC平分BAD,AB=AD求证:ABCADC,:AC平分BAD, BAC=DAC, 在ABC和ADC中, AB=AD BAC=DAC AC=AC , ABCADC,全等三角形的判定,9.如图,已知点E,C在线段BF上,BE=CF,ABDE,ACB=F求

4、证:ABCDEF,证明:ABDE, B=DEF BE=CF, BC=EF ACB=F, B=DEF BC=EFACB=F , ABCDEF,全等三角形的判定;平行线的性质,10.已知:如图,E、F在AC上,ADCB且AD=CB,D=B求证:AE=CF,证明:ADCB, A=C, 在ADF和CBE中,A=C AD=CB D=B , ADFCBE(ASA), AF=CE, AF+EF=CE+EF,即AE=CF,全等三角形的判定与性质,11.在ABC中,AB=CB,ABC=90,F为AB延长线上一点,点E在BC上,且AE=CF求证:RtABERtCBF;,(1)证明:ABC=90, CBF=ABE=

5、90, 在RtABE和RtCBF中, AE=CF AB=BC , RtABERtCBF(HL);,直角三角形全等的判定,如图,ABC中,ABC=BAC=45,点P在AB上,ADCP,BECP,垂足分别为D,E,已知DC=2,求BE的长,ABC=BAC=45 ACB=90,AC=BC DAC+ACD=90,BCE+ACD=90 DAC=BCE 又ADC=CEB ACDCEB BE=CD=2,直角三角形全等的判定;全等三角形的性质,如图,ABC中,AB=AC,1=2,求证:AD平分BAC,解:AB=AC, ABC=ACB 1=2, ABD=ACD,BD=CD AB=AC,BD=CD, ABDACD

6、 BAD=CAD 即AD平分BAC,全等三角形的判定与性质,如图,ABC中,AB=AC,过点A作GEBC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G试在图中找出3对全等三角形,并对其中一对全等三角形给出证明,:BCFCBD BHFCHD BDACFA 证明:在BCF与CBD中, AB=AC ABC=ACB BD、CF是角平分线 BCF=1 2 ACB,CBD=1 2 ABC BCF=CBD, BCF=CBD BC=BC ABC=ACB BCFCBD(ASA),全等三角形的判定,如图,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E,F,BE=CF 求证:AD是ABC的角平分线,证明:DEAB,DFAC, RtBDE=RtDCF=90BD=DC BE=CF , RtBDERtDCF(HL), DE=DF, 又DEAB,DFAC, AD是角平分线,角平分线的性质;全等三角形的判定与性质,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报