1、实验五 弦音实验ZCA 型吉他型弦音实验仪是弦振动、声学实验教学仪器。通过调节面板上频率调节旋钮,移动支撑弦线劈尖的位置,观察到驻波的形成、听到与频率相对应的声音。1. 工作条件1-1.电源电压及频率:220V 10%,50Hz 5%。1-2.功率 30VA。1-3.工作温度范围 040。2. 技术指标2-1. 正弦波输出频率:50-900Hz。2-2. 正弦波失真度 1%。2-3. 显示误差 0.5Hz。一 实 验 目 的1 了解弦振动的传播规律,观察弦振动形成驻波时的波形,聆听相关频率的声音。2 测量弦线上横波的传播速度及弦线的线密度和张力间的关系。二 实 验 装 置实验装置如图 1 所示
2、。吉它上有四支钢质弦线,中间两支是用来测定弦线张力,旁边两支用来测定弦线线密度。实验时,弦线 3 与音频信号源接通。这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在张力调节旋钮上的弦线,可间接测定弦线的张力。三、实 验 原 理如图 1 所示,实验时,将弦线 3(钢丝)绕过弦线导轮 5 与砝码盘 10 连接,并通过接线柱 4 接通正弦信号源。在磁场
3、中,通有电流的金属弦线会受到磁场力(称为安培力)的作用,若弦线上接通正弦交变电流时,则它在磁场中所受的与磁场方向和电流方向均为垂直的安培力,也随之发生正弦变化,移动劈ONF浙 大 城 市 学 院 科 教 仪 器 研 究 室频 率 调 节 连 续波 形 选 择细 调 粗 调 10ZCXS A 型 弦 音 实 验 仪 HZ电 源断 续986754123图 1 试验装置示意图,1、接线柱插孔, 2、频率显示, 3、钢质弦线,4、张力调节旋钮,5、弦线导轮, 6、电源开关,7、波型选择开关, 8、频段选择开关,9、频率微调旋钮,10、砝码盘尖改变弦长,当弦长是半波长的整倍数时,弦线上便会形成驻波。移动
4、磁钢的位置,将弦线振动调整到最佳状态,使弦线形成明显的驻波。此时我们认为磁钢所在处对应的弦为振源,振动向两边传播,在劈尖与吉它骑码两处反射后又沿各自相反的方向传播,最终形成稳定的驻波。考察与张力调节旋钮相连时的弦线 3 时,可调节张力调节旋钮改变张力,使驻波的长度产生变化。为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从骑码端发出的,沿弦线朝劈尖端方向传播,称为入射波,再由劈尖端反射沿弦线朝骑码端传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖到适合位置弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图 2 所示。设图中的
5、两列波是沿 X 轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,位相差为恒定时,它们就合成驻波用粗实线表示。由图 2 可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。下面用简谐波表达式对驻波进行定量描述。设沿 X 轴正方向传播的波为入射波,沿 X 轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点 “O”,且在 X0 处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1Acos2(ftx/ ),Y2Acos2(ftx/ )式中 A 为简谐波的振幅,f 为频率,为波长,
6、X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为:Y1 Y22Acos2(x/ )cos2ft 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为2Acos2(x / ) |,只与质点的位置 X 有关,与时间无关。由于波节处振幅为零,即cos2(x / ) |0,2x / (2k+1) / 2 ( k=0.1. 2. 3. ) , 可得波节的位置为:X(2K1) /4 而相邻两波节之间的距离为: XK1 X K 2(K1)1 /4(2K1) ( / 4) / 2 又因为波腹处的质点振幅为最大,即cos2(X / ) | =1,2X / K ( K=0.
7、 1. 2. 3. ) 可得波腹的位置为: XK / 2 2k / 4 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。在本实验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,其数学表达式为:Ln / 2 ( n=1. 2. 3.)由此可得沿弦线传播的横波波长为:2L / n 式中 n 为弦线上驻波的段数,即半波数。根据波动理论,弦线横波的传播速度为:AoXB2 Tt=04t=2X图 波 形 示 意 图V(T/) 1/2 即: ,式中 T 为弦
8、线中张力, 为弦线单位长度的质量,即线密度。2T根据波速、上面频率及波长的普遍关系式 Vf,将式代入可得:V2Lf/n 再由式可得 =T(n/2Lf) 2 ( n=1. 2. 3. ) 即:T=(2Lf/n) 2 ( n=1. 2. 3. ),由式可知,当给定 T、L,频率 f 只有满足该式关系才能在弦线上形成驻波。当金属弦线在周期性的安培力激励下发生共振干涉形成驻波时,通过骑码的振动激励共鸣箱的薄板振动,薄板的振动引起吉他音箱的声振动,经过释音孔释放,我们能听到相应频率的声音,当用间歇脉冲激励时尤为明显。常见的音阶由 7 个基本的音组成,用唱名表示即:do,re,mi,fa,so,la,si
9、,用 7 个音以及比它们高一个或几个八度的音、低一个或几个八度的音构成各种组合就成为“曲调” 。振动的强弱(能量的大小)体现为声音的大小,不同物体的振动体现为声音音色的不同,而振动的频率 f 则体现声音的高低。f = 261.63Hz 的音在音乐里用字母 c1表示。其相应的音阶表示为:c,d,e,f,g,a,b,在将 c 音唱成“do”时定为 c 调。人声及器乐中最富有表现力的频率范围约为60Hz1000Hz。c 调中 7 个基本音的频率,以“do”音的频率 f = 261.63Hz 为基准,其它各音的频率为其倍数,其倍数值如下表所示:音名 C D E F G A B C频率倍数1 21415
10、12712912122四、实 验 内 容:1 频率 f 一定,测量两种弦线的线密度 和弦线上横波传播速度(弦线 a,a为同一种规格,b,b为另一种规格)测弦线 a的线密度:波形选择开关 7 选择连续波位置,将信号发生器输出插孔 1 与弦线 a接通。选取频率 f = 240Hz,张力 T 由挂在弦线一端的砝码及砝码钩产生,以 100g 砝码为起点逐渐增加至 180g为止。在各张力的作用下调节弦长 L,使弦线上出现 n=2,n=3 个稳定且明显的驻波段。记录相应的f、n、L 的值,由公式 计算弦线的线密度 。2fn弦线上横波传播速度 V=2Lf/n,作 T- 拟合直线,由直线的斜率亦可求得弦线的线
11、密度。(T=V 2)V测弦线 b的线密度:将信号发生器输出插孔 1 与弦线 b接通,选取频率 f=200Hz。方法同 a。2 张力 一定,测量弦线的线密度 和弦线上横波传播速度 V在张力 T 一定的条件下,改变频率 f 分别为 200Hz、220 Hz、240Hz、260 Hz、280 Hz,移动劈尖,调节弦长 L,仍使弦线上出现 n=2,n=3 个稳定且明显的驻波段。记录相应的 f、n、L 的值,由公式可间接测量出弦线上横波的传播速度 V。3测量弦线张力 T选择与张力调节旋钮 4 相连的弦线 a 或者 b,与信号发生器输出插孔 1 连接,调节频率 f=200Hz 左右,适当调节张力调节旋钮,
12、同时移动劈尖改变弦长 L,使弦线上出现明显驻波。记录相应的 f、n、L 的值,可间接测量出这时弦线的张力: 。2nfT4聆听音阶高低在频率较低情况下形成驻波时,波形选择开关 7 由连续调节至断续位置,聆听其音;然后在频率较高情况下形成驻波时,波形选择开关 7 由连续调节至断续位置,聆听其音阶。五、数据记录及处理:砝码钩的质量 m = kg重力加速度 g = 9.8 m/s21 频率 f 一定,测弦线的线密度 和弦线上横波传播速度 V弦线 a 线密度的测定:f = 240 HzT(9.8N) 0.100+m 0.120+m 0.140g+m 0.160+m 0.180+m驻波段数 n 2 3 2
13、 3 2 3 2 3 2 3弦线长 L(10-2m)线密度 2Lf(kg/m)平均线密度 (kg/m)传播速度 V=2Lf/n (m/s)平均传播速度 (m/s)V( m/s)2*作 T 拟合直线,由直线的斜率 求弦线的线密度。(T=V 2)TV2弦线 b 线密度的测定:f=200Hz,数据记录表格同 a。2 张力 T 一定,测量弦线的线密度 和弦线上横波传播速度 VT(0.150+m)9.8N频率 f(H Z) 200 220 240 260 280驻波段数 n 2 3 2 3 2 3 2 3 2 3弦线长 L(10-2m)横波速度V=2Lf/n(m/S)平均横波速度 = (m/s) , = (m/s)2V2V线密度 (kg/m)2T3测量弦线张力 Tf(Hz) 驻波段数 n 弦线长 L(10-2m) 弦线张力 T(N)=2nLfT六、使用注意事项1、 在线柱 4 与弦线连接时、应避免与相邻弦线短路。2、 改变挂在弦线一端的砝码后,要使砝码稳定后再测量。3、 磁钢不能处于波节下位置。要等波稳定后,再记录数据。七、 思 考 题1 拉紧度是否与共振频率有关?是否与共振波的波形有关?2 改变弦的线密度与共振频率是否有关?