1、河北省蠡县中学 2018-2019学年高一数学 9月月考试题一、选择题:本大题共 12个小题,每小题 5分,共 60分.1. 已知 ,则 ( )526xxA B C D 55log2626log52. 已知函数 的图象如图,其中可以用二分法求解的个数为( )yfxA 个 B 个 C 个 D 个12433. 图中阴影部分所表示的集合是 ( )A B UBCUCABC D 4. 函数 的零点是( )231fxA B C. D 1,1,21,25. 已知集合 ,集合 ,则 与 的关系|206Pxy|06QyxPQ是( )A B C. D QP6. 已知函数: ; ; ; ,则下列函数图象(第一象限2
2、xy2logx1y12x部分)从左到右依次与函数序号的对应顺序是 ( )A B C. D7. 下列语句错误的是( )A如果不属于 的元素也不属于 ,则 BABB把对数式 化成指数式为 lg2x102xC. 对数的底数必为正数 D “二分法”对连续不断的函数的所有零点都有效 8. 是定义域为 上的奇函数,当 时, 为常数),则fxR0x2(xfm( )2A B C. D 97979. 某厂原来月产量为 ,一月份增产 ,二 月份比一月份减产 ,设二月份产量b0303为 ,则( )aA B C. D0.9a.91abab10. 函数 是 ( ) 20log16xfxA奇函数 B偶函数 C. 既是奇函
3、数又是偶函数 D非奇非偶函数11. 函数 在区间 上单调递增,则实数 的取值范围是( )13axf5,aA B C. D10,3, 1,3,12. 已知 是函数 的一个零点,若 ,则( 0x123xf1020,xx)A B 12ff12ffC. D 0,x 0,x二、填空题(每题 5分,满分 20分,将答案填在答题纸上)13. 幂函数 的图象过点 ,则 的解析式是_.f16,2f14. 已知集合 ,若 为单元素集合,则 _.|0AxRaxAa15. 若 ,则 _.3x233x16. 若函数 的定义域为 ,则函数 的定义域为_.f16fx三、解答题 (本大题共 6小题,共 70分.) 17. (
4、本小题满分 10分)若 求 的值,41lg,4lgbaaabaalogll18. (本小题满分 12分)若使不等式 成立的 的集合(其中 ,且 ). 231xxa0a119. (本小题满分 12分)已知函数 .21fxx(1) 当 时,求 的值域 ; ,2xfx(2) 若 ,试判断 的奇偶性,并证明你的结论.FfFx20. (本小题满分 12分)已知函数 .log1,log1,0,1aafxxxa(1) 设 ,函数 的定义域为 , 求 的最大值;2agx5(2)当 时,求使 的 的取值范围.010fx21.(本小题满分 12分)乒乓球是我国的国球,在 2016年巴西奥运会上尽领风骚,包揽该项目
5、全部金牌,现某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时 元;乙家按月计费,一个月中 小时以内(含 小时)每张62020球台 元,超过 小时的部分,每张球台每小时 元,某公司准备下个月从这两家中的902一家租一张球台开展活动,其活动时间不少于 小时,也不超过 小时.13(1)设在甲家租一张球台开展活动 小时的收费为 元 ,在乙家租一张xfx1230球台开展活动 小时的收费为 元 ,试求 与 的解析式.xg1230gx(2)选择哪家比较合算?为什么? 22. (本小题满分 12分)若函数 满足 (其中 ,fxxaaf 2210且 )1a(1) 求 的解析
6、式,并判断单调性;fx(2)当 时, ,求 的取值范围.240fxa参考答案一、1-5. BDBAC 6-10.ADDCB 11-12.CA 二、13. 14. 或 15. 16. 14fx08612,3三、17.解: lglglolglabbabaA 22 214lllll 8a A19.解:(1)由已知 ,显然函数 在 上是减函数,21fxfx1,2时, 时, 时,函数 的值域是xma,2f min0,fxfx. 0,2(2) 是奇函数,证明: Fx2211ffxxx是奇函数.2,xF20.解:(1)当 时, ,在 为减函数,因此当 时a2log1xx5,115x最大值为 . gx4(2)
7、 ,即 当 时, ,满0fx,fx0aloglaaxx足 ,故当 时解集为: .1,10x1|10x21.解:(1) . 90,26,23; 3fxgxx(2)当 时, ,即当 时, ;当130x69,15x215xfxg时, ,当 时, .5xfg0fg当 时, , 当 时,选甲家比较合算;当 时,两家0fxx15x一样合算;当 时,选乙家比较合算.153x22.解:(1)令, 当 时,2 22, ,11tt xaatRft fxR 1a为增函数, 为增函数,且 , 为增函数 ,当 时,xyaxy20f0为减函数, 为减函数,且 , 为增函数, 在aaxfx上是增函数 .R(2) 在 上是增函数 , 也是 上的增函数,由 ,fx4yfxR2ff得 ,要使 在 上恒为负数,只需 ,即4,2240f,42221,1aa,又 , 的取值范围为24,0,3a1a.33