收藏 分享(赏)

线性非齐次方程解的结构.ppt

上传人:dreamzhangning 文档编号:3352030 上传时间:2018-10-17 格式:PPT 页数:10 大小:369.50KB
下载 相关 举报
线性非齐次方程解的结构.ppt_第1页
第1页 / 共10页
线性非齐次方程解的结构.ppt_第2页
第2页 / 共10页
线性非齐次方程解的结构.ppt_第3页
第3页 / 共10页
线性非齐次方程解的结构.ppt_第4页
第4页 / 共10页
线性非齐次方程解的结构.ppt_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、三、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y (x) 是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解 .,证: 将,代入方程左端, 得,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如, 方程,有特解,对应齐次方程,有通解,因此该方程的通解为,因而 也是通解 .,定理 4.,分别是方程,的特解,是方程,的特解. (非齐次方程之解的叠加原理),定理3, 定理4 均可推广到 n 阶线性非齐次方程.,定理 5.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,常数, 则该方程

2、的通解是 ( ).,设线性无关函数,都是二阶非齐次线,性方程,的解,是任意,例3.,提示:,都是对应齐次方程的解,二者线性无关 . (反证法可证),(89 考研 ),例4.,已知微分方程,个解,求此方程满足初始条件,的特解 .,解:,是对应齐次方程的解,且,常数,因而线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,*四、常数变易法,复习:,常数变易法:,对应齐次方程的通解:,设非齐次方程的解为,代入原方程确定,对二阶非齐次方程,情形1. 已知对应齐次方程通解:,设的解为,由于有两个待定函数, 所以要建立两个方程:,令,于是,将以上结果代入方程 :,得,故, 的系数行列式,积分得:,代入 即得非齐次方程的通解:,于是得,说明:,将的解设为,只有一个必须满足的条件即方程,因此必需再附加一,个条件,方程的引入是为了简化计算.,例5.,的通解为,的通解.,解: 将所给方程化为:,已知齐次方程,求,利用,建立方程组:,积分得,故所求通解为,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报