1、第1章 矢量分析与场论,一、矢量和标量的定义,二、矢量的运算法则,三、矢量微分元:线元,面元,体元,四、标量场的梯度,六、矢量场的旋度,五、矢量场的散度,七、亥姆霍兹定理及重要的场论公式,一、矢量和标量的定义,1.标量:只有大小,没有方向的物理量。,矢量表示为:,所以:一个矢量就表示成矢量的模与单位矢量的乘积。,其中: 为矢量的模,表示该矢量的大小。为单位矢量,表示矢量的方向,其大小为1。,2.矢量:不仅有大小,而且有方向的物理量。,如:力 、速度 、电场 等,如:温度 T、长度 L 等,例:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?,图示法:,力的图示法:,二、矢量的运算法则,
2、1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。,a.满足交换律:,b.满足结合律:,三个方向的单位矢量用 表示。,根据矢量加法运算:,所以:,在直角坐标系下的矢量的表示:,其中:,矢量:,.模的计算:,.单位矢量:,.方向角与方向余弦:,在直角坐标系中三个矢量加法运算:,2.减法:换成加法运算,逆矢量: 和 的模相等,方向相反,互为逆矢量。,在直角坐标系中两矢量的减法运算:,3.乘法:,(1)标量与矢量的乘积:,(2)矢量与矢量乘积分两种定义,a. 标量积(点积):,两矢量的点积含义:一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。,在直角坐标系中,已知三个坐标轴是相
3、互正交的,即,有两矢量点积:,结论:两矢量点积等于对应分量的乘积之和。,推论1:满足交换律,推论2:满足分配律,推论3:当两个非零矢量点积为零,则这两个矢量必正交。,推论1:不服从交换律:,推论2:服从分配律:,推论3:不服从结合律:,推论4:当两个非零矢量叉积为零,则这两个矢量必平行。,b.矢量积(叉积):,含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。,在直角坐标系中,两矢量的叉积运算如下:,两矢量的叉积又可表示为:,(3)三重积:,三个矢量相乘有以下几种形式:,矢量,标量与矢量相乘。,标量,标量三重积。,矢量,矢
4、量三重积。,a. 标量三重积,法则:在矢量运算中,先算叉积,后算点积。,定义:,含义: 标量三重积结果为三矢量构成的平行六面体的体积 。,注意:先后轮换次序。,推论:三个非零矢量共面的条件。,在直角坐标系中:,b.矢量三重积:,例1:,解:,则:,设,例2: 已知,求:确定垂直于 、 所在平面的单位矢量。,三、矢量微分元:线元,面元,体元,例:,其中 : 和 称为微分元。,1.直角坐标系 在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。,线元:,面元:,体元:,2.圆柱坐标系,在圆柱坐标系中,坐标变量为 ,如图,做一微分体元。,线元:,面元:,体元:,3.球坐标系,在球坐标系中,
5、坐标变量为 ,如图,做一微分体元。,线元:,面元:,体元:,a. 在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1,即:,b. 在柱坐标系中,坐标变量为 , 其中 为角度,其对应的线元 ,可见拉梅系数为:,在球坐标系中,坐标变量为 ,其中 均为角度,其拉梅尔数为:,注意:,每个坐标长度增量同各自坐标增量之比, 称为度量系数或,在正交曲线坐标系中,其坐标变量 不一定都是长度,其线元必然有一个修正系数,这些修正系数称为拉梅系数,若已知其拉梅系数 ,就可正确写出其线元,面元和体元。,体元:,线元:,面元:,正交曲线坐标系:,四、标量场的梯度,1.标量场的等值面,可以看出:标量场的函数是单值函
6、数,各等值面是互不相交的。,以温度场为例:,热源,等温面,b.梯度,定义:标量场中某点梯度的大小为该点最大的方向导数,其方向为该点所在等值面的法线方向。,数学表达式:,2.标量场的梯度,a.方向导数:,空间变化率,称为方向导数。,为最大的方向导数。,标量场的场函数为,甲:每米的温度变化为乙:每米的温度变化为丙:每米的温度变化为同一温度场中,其等温面沿不同方向的变化率不同。,方向性导数不同,计算:,在直角坐标系中:,所以:,梯度也可表示:,在柱坐标系中:,在球坐标系中:,在任意正交曲线坐标系中:,在不同的坐标系中,梯度的计算公式:,在直角坐标系中:,某二维标量场梯度,五、矢量场的散度,1. 矢线
7、(场线):,在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线成为矢线。,2. 通量:,定义:如果在该矢量场中取一曲面S,通过该曲面的矢线量称为通量。,表达式:,若曲面为闭合曲面:,讨论:,a. 如果闭合曲面上的总通量,说明穿出闭合面的通量大于穿入曲面的通量,意味着闭合面内存在正的通量源。,b. 如果闭合曲面上的总通量,说明穿入的通量大于穿出的通量,那么必然有一些矢线在曲面内终止了,意味着闭合面内存在负源或称沟。,c. 如果闭合曲面上的总通量,说明穿入的通量等于穿出的通量。,3.散度:,a.定义:矢量场中某点的通量密度称为该点的散度。,b.表达式:,c.散度的计算:,在
8、直角坐标系中,如图做一封闭曲面,该封闭曲面由六个平面组成。,矢量场 表示为:,在 x方向上:,计算穿过 和 面的通量为,因为:,则:,在 x 方向上的总通量:,在 z 方向上,穿过 和 面的总通量:,整个封闭曲面的总通量:,同理:在 y方向上,穿过 和 面的总通量:,该闭合曲面所包围的体积:,通常散度表示为:,4.散度定理:,物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。,柱坐标系中:,球坐标系中:,正交曲线坐标系中:,直角坐标系中:,常用坐标系中,散度的计算公式,六、矢量场的旋度,1.环量:,在矢量场中,任意取一闭合曲线 ,将矢量沿该曲线积分称之为环量。,可见:环量的大小与环面的方向
9、有关。,2.旋度:,定义:一矢量其大小等于某点最大环量密度,方向为该环的法线方向,那么该矢量称为该点矢量场的旋度。,表达式:,旋度计算:,以直角坐标系为例,一旋度矢量可表示为:,场矢量:,其中: 为x 方向的环量密度。,旋度可用符号表示:,其中:,可得:,同理:,所以:,旋度公式:,为了便于记忆,将旋度的计算公式写成下列形式:,类似的,可以推导出在广义正交坐标系中旋度计算公式:,对于柱坐标,球坐标,已知其拉梅系数,代入公式即可写出旋度的计算公式。,3.斯托克斯定理:,物理含义:一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。,方向相反 大小相等 结果抵消,亥姆霍兹定理的简化表述如下:
10、若矢量场F在无限空间中处处单值, 且其导数连续有界, 而源分布在有限区域中, 则矢量场由其散度和旋度唯一地确定。 并且, 它可表示为一个标量函数的梯度和一个矢量函数的旋度之和, 即,七、 亥姆霍兹定理,矢量场的分类,根据矢量场的散度和旋度值是否为零进行分类:,1) 调和场,若矢量场F在某区域V内,处处有:F=0和F=0 则在该区域V内,场F为调和场。,注意:不存在在整个空间内散度和旋度处处均为零的矢量场。,调和场,有源无旋场,无源有旋场,有源有旋场,2) 有源无旋场,如果 ,则称矢量场F为无旋场。无旋场F可以表示为另一个标量场的梯度,即,函数u称为无旋场F的标量位函数,简称标量位。,无旋场F沿
11、闭合路径C的环量等于零,即,这一结论等价于无旋场的曲线积分 与路径无关,只与起点P和终点Q 有关。 标量位u的积分表达式:,由 ,有,函数A称为无源场F的矢量位函数,简称矢量位。 无源场F通过任何闭合曲面S的通量等于零,即,4) 有源有旋场,一般的情况下,如果在矢量场F的散度和旋度都不为零,即,如果 ,则称矢量场F为无源场。无源场F可以表示为另一个矢量场的旋度,即,(3)无源有旋场,可将矢量场F表示为一个无源场Fs和无旋场Fi 的叠加,即,其中Fs和Fi分别满足,于是,因而,可定义一个标量位函数u和矢量位函数A,使得,重要的场论公式,1. 两个零恒等式,任何标量场梯度的旋度恒为零。,任何矢量场
12、的旋度的散度恒为零。,在圆柱坐标系中:,在球坐标系中:,在广义正交曲线坐标系中:,2. 拉普拉斯算子,在直角坐标系中:,3. 常用的矢量恒等式,基本要求,掌握矢量在正交坐标系中的表示方法 掌握矢量的代数运算及其在坐标系中的几何意义 掌握矢量积、标量积的计算 了解矢量场散度的定义,掌握其计算方法和物理意义;掌握散度定理的内容,并能熟练运用。 了解矢量场旋度的定义,掌握其计算方法和物理意义;掌握斯托克斯公式的内容,并能数量应用。,了解标量场的梯度的定义,掌握其计算方法和物理意义 了解曲面坐标系中矢量的表示方法、三种坐标系的转换 了解曲面坐标系中散度、旋度的表示线元、面积元、体积元的表示 正确理解亥姆霍兹定理的内容,并能正确应用。,