1、1,第四章 运 输 问 题,1运 输 模 型2运输问题的计算机求解3运输问题的应用,2,例1、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?,1运 输 模 型,3,解: 产销平衡问题: 总产量 = 总销量 设 xij 为从产地Ai运往销地Bj的运输量,得到下列运输量表:,Min f = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23 s.t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 15
2、0 x12 + x22 = 150 x13 + x23 = 200 xij 0 ( i = 1、2;j = 1、2、3),1运 输 模 型,4,1运 输 模 型,一般运输模型:产销平衡 A1、 A2、 Am 表示某物资的m个产地; B1、B2、Bn 表示某物质的n个销地;si 表示产地Ai的产量; dj 表示销地Bj 的销量; cij 表示把物资从产地Ai运往销地Bj的单位运价。设 xij 为从产地Ai运往销地Bj的运输量,得到下列一般运输量问题的模型: m n Min f = cij xij i = 1 j = 1 n s.t. xij = si i = 1,2,m j = 1 m xij
3、= dj j = 1,2,n i = 1 xij 0 (i = 1,2,m ; j = 1,2,n),5,1运 输 模 型,变化: 1)有时目标函数求最大。如求利润最大或营业额最大等; 2)当某些运输线路上的能力有限制时,在模型中直接加入约束条件(等式或不等式约束); 3)产销不平衡时,可加入假想的产地(销大于产时)或销地(产大于销时)。,6,1运 输 模 型,例2、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?解:增加一个虚设的销地运输费用为0,7,1运 输 模 型,例3、
4、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?解:增加一个虚设的产地运输费用为0,8,2运输问题的计算机求解,9,2运输问题的计算机求解,10,2运输问题的计算机求解,11,3运输问题的应用,一、产销不平衡的运输问题例4、石家庄北方研究院有一、二、三三个区。每年分别需要用煤3000、1000、2000吨,由河北临城、山西盂县两处煤矿负责供应,价格、质量相同。供应能力分别为1500、4000吨,运价为: 由于需大于供,经院研究决定一区供应量可减少0-300吨,二区必须满足需求量
5、,三区供应量不少于1500吨,试求总费用为最低的调运方案。,12,3运输问题的应用,解: 根据题意,作出产销平衡与运价表: 这里 M 代表一个很大的正数,其作用是强迫相应的 x31、 x33、 x34取值为0。,13,3运输问题的应用,一、产销不平衡的运输问题例5、设有A、B、C三个化肥厂供应1、2、3、4四个地区的农用化肥。假设效果相同,有关数据如下表: 试求总费用为最低的化肥调拨方案。,14,3运输问题的应用,解: 根据题意,作出产销平衡与运价表: 最低要求必须满足,因此把相应的虚设产地运费取为 M ,而最高要求与最低要求的差允许按需要安排,因此把相应的虚设产地运费取为 0 。对应 4”的
6、销量 50 是考虑问题本身适当取的数据,根据产销平衡要求确定 D的产量为 50。,15,3运输问题的应用,二、生产与储存问题例6、某厂按合同规定须于当年每个季度末分别提供10、15、25、20台同一规格的柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如右表。如果生产出来的柴油机当季不交货,每台每积压一个季度需储存、维护等费用0.15万元。试求在完成合同的情况下,使该厂全年生产总费用为最小的决策方案。,16,3运输问题的应用,解: 设 xij为第 i 季度生产的第 j 季度交货的柴油机数目,那么应满足: 交货:x11 = 10 生产:x11 + x12 + x13 + x14 25 x1
7、2 + x22 = 15 x22 + x23 + x24 35 x13 + x23 + x33 = 25 x33 + x34 30 x14 + x24 + x34 + x44 = 20 x44 10 把第 i 季度生产的柴油机数目看作第 i 个生产厂的产量;把第 j 季度交货的柴油机数目看作第 j 个销售点的销量;成本加储存、维护等费用看作运费。可构造下列产销平衡问题:目标函数:Min f = 10.8 x11 +10.95 x12 +11.1 x13 +11.25 x14 +11.1 x22 +11.25 x23 +11.4 x24 +11.0 x33 +11.15 x34 +11.3 x4
8、4,17,3运输问题的应用,二、生产与储存问题例7、光明仪器厂生产电脑绣花机是以产定销的。已知1至6月份各月的生产能力、合同销量和单台电脑绣花机平均生产费用见下表: 已知上年末库存103台绣花机,如果当月生产出来的机器当月不交货,则需要运到分厂库房,每台增加运输成本0.1万元,每台机器每月的平均仓储费、维护费为0.2万元。在7-8月份销售淡季,全厂停产1个月,因此在6月份完成销售合同后还要留出库存80台。加班生产机器每台增加成本1万元。问应如何安排1-6月份的生产,可使总的生产费用(包括运输、仓储、维护)最少?,18,3运输问题的应用,解: 这个生产存储问题可化为运输问题来做。考虑:各月生产与
9、交货分别视为产地和销地 1)1-6月份合计生产能力(包括上年末储存量)为743台,销量为707台。设一假想销地销量为36; 2)上年末库存103台,只有仓储费和运输费,把它列为第0行; 3)6月份的需求除70台销量外,还要80台库存,其需求应为70+80=150台; 4)1-6表示1-6月份正常生产情况, 1-6表示1-6月份加班生产情况。产销平衡与运价表:,19,3运输问题的应用,用“管理运筹学”软件解得的结果是:1-6月最低生产费用为8307.5万元,每月的销售安排如下表所示,20,3运输问题的应用,三、转运问题: 在原运输问题上增加若干转运站。运输方式有:产地 转运站、转运站 销地、产地
10、 产地、产地 销地、销地 转运站、销地 产地等。例8、腾飞电子仪器公司在大连和广州有两个分厂生产同一种仪器,大连分厂每月生产400台,广州分厂每月生产600台。该公司在上海和天津有两个销售公司负责对南京、济南、南昌、青岛四个城市的仪器供应。另外因为大连距离青岛较近,公司同意大连分厂向青岛直接供货,运输费用如图,单位是百元。问应该如何调运仪器,可使总运输费用最低?图中 1- 广州、2 - 大连、3 - 上海、4 - 天津、5 - 南京、6 - 济南、7 - 南昌、8 - 青岛,21,3运输问题的应用,解:设 xij 为从 i 到 j 的运输量,可得到有下列特点的线性规划模型:目标函数:Min f
11、 = 所有可能的运输费用(运输单价与运输量乘积之和)约束条件: 对产地(发点) i :输出量 - 输入量 = 产量 对转运站(中转点):输入量 - 输出量 = 0 对销地(收点) j :输入量 - 输出量 = 销量例8(续)目标函数: Min f = 2x13+ 3x14+ 3x23+ x24+ 4x28 + 2x35+ 6x36+ 3x37+ 6x38+ 4x45+ 4x46+ 6x47+ 5x48 约束条件: s.t. x13+ x14 600 (广州分厂供应量限制) x23+ x24+ x28 400 (大连分厂供应量限制) -x13- x23 + x35 + x36+ x37 + x3
12、8 = 0 (上海销售公司,转运站) -x14- x24 + x45 + x46+ x47 + x48 = 0 (天津销售公司,转运站) x35+ x45 = 200 (南京的销量) x36+ x46 = 150 (济南的销量) x37+ x47 = 350 (南昌的销量) x38+ x48 + x28 = 300 (青岛的销量) xij 0 , i,j = 1,2,3,4,5,6,7,8,22,3运输问题的应用,用“管理运筹学”软件求得结果: x13 = 550 x14 =50 ; x23 = 0 x24 = 100 x28 = 300 ; x35 = 200 x36 = 0 x37 = 3
13、50 x38 = 0 ; x45 = 0 x46 = 150 x47 = 0 x48 = 0 。最小运输费用为:4600百元,23,3运输问题的应用,例9、某公司有A1、 A2、 A3三个分厂生产某种物资,分别供应B1、 B2、 B3、 B4四个地区的销售公司销售。假设质量相同,有关数据如下表: 试求总费用为最少的调运方案。假设: 1.每个分厂的物资不一定直接发运到销地,可以从其中几个产地集中一起运; 2.运往各销地的物资可以先运给其中几个销地,再转运给其他销地; 3.除产销地之外,还有几个中转站,在产地之间、销地之间或在产地与销地之间转运。,24,3运输问题的应用,运价如下表:解:把此转运问题转化为一般运输问题: 1、把所有产地、销地、转运站都同时看作产地和销地; 2、运输表中不可能方案的运费取作M,自身对自身的运费为0; 3、Ai: 产量为 20+原产量, 销量为 20; Ti : 产量、销量均为 20; Bi: 产量为 20, 销量为 20 +原销量,其中20为各点可能变化的最大流量; 4、对于最优方案,其中 xi i 为自身对自身的运量,实际上不进行运作。,25,3运输问题的应用,扩大的运输问题产销平衡与运价表:,