1、第五章 数组和广义表,1 数组 2 数组的存储结构 3 特殊矩阵及其压缩存储 4 稀疏矩阵 5 广义表,本章学习导读,本章主要介绍数组的概念及在计算机中的存放,特殊矩阵的压缩存储及相应运算,广义表的概念和存储结构及其相关运算的实现。通过本章学习,要求掌握如下内容: 1数组的定义及在计算机中的存储表示; 2对称矩阵、三角矩阵、对角矩阵等特殊矩阵在计算机中的压缩存储表示及地址计算公式; 3稀疏矩阵的三元组表示及转置算法实现; 4稀疏矩阵的十字链表表示及相加算法实现; 5广义表存储结构表示及基本运算。,5.1 数组,5.1.1 数组的概念 数组是大家都已经很熟悉的一种数据类型,几乎所有高级语言程序设
2、计中都设定了数组类型。在此,我们仅简单地讨论数组的逻辑结构及在计算机内的存储方式。 1一维数组 一维数组可以看成是一个线性表或一个向量,它在计算机内是存放在一块连续的存储单元中,适合于随机查找。这在第2章的线性表的顺序存储结构中已经介绍。 2二维数组 二维数组可以看成是向量的推广。例如,设A是一个有m行n列的二维数组,则A可以表示为:,在此,可以将二维数组A看成是由m个行向量X0,X1, ,Xm-1T组成,其中,Xi=( ai0, ai1, .,ain-1), 0im-1;也可以将二维数组A看成是由n个列向量y0, y1, ,yn-1组成,其中 yi=(a0i, a1i, ,am-1i),0i
3、n-1。由此可知二维数组中的每一个元素最多可有两个直接前驱和两个直接后继(边界除外),故是一种典型的非线性结构。 3多维数组 同理,三维数组最多可有三个直接前驱和三个直接后继,三维以上数组可以作类似分析。因此,可以把三维以上的数组称为多维数组,多维数组可有多个直接前驱和多个直接后继,故多维数组是一种非线性结构。 5.1.2 数组在计算机内的存放 怎样将数组中元素存入到计算机内存中呢?由于计算机内存结构是一维的(线性的),因此,用一维内存存放多维数组就必须按某种次序将数组元素排成一个线性序列,然后将这个线性序列顺序存放在存储器中。,5.2 数组的存储结构由于数组一般不作插入或删除操作,也就是说,
4、一旦建立了数组,则结构中的数组元素个数和元素之间的关系就不再发生变动,即它们的逻辑结构就固定下来了,不再发生变化。因此,采用顺序存储结构表示数组是顺理成章的事了。本章中,仅重点讨论二维数组的存储,三维及三维以上的数组可以作类似分析。一维数组在这里不再讨论。 多维数组的顺序存储有两种形式。,1存放规则 行优先顺序也称为低下标优先或左边下标优先于右边下标。具体实现时,按行号从小到大的顺序,先将第一行中元素全部存放好,再存放第二行元素,第三行元素,依次类推 例如,对刚才的Amn二维数组,可用如下形式存放到内存:a00,a01,a0n-1,a10,a11,., a1 n-1,am-1 0 , am-1
5、 1,am-1 n-1。即二维数组按行优先存放到内存后,变成了一个线性序列(线性表)。 因此,可以得出多维数组按行优先存放到内存的规律:最左边下标变化最慢,最右边下标变化最快,右边下标变化一遍,与之相邻的左边下标才变化一次。因此,在算法中,最左边下标可以看成是外循环,最右边下标可以看成是最内循环。,5.2.1 行优先顺序,2地址计算 由于多维数组在内存中排列成一个线性序列,因此,若知道第一个元素的内存地址,如何求得其他元素的内存地址?我们可以将它们的地址排列看成是一个等差数列,假设每个元素占L个字节,元素aij 的存储地址应为第一个元素的地址加上排在aij 前面的元素所占用的单元数,而aij
6、的前面有i行(0i-1)共in个元素,而本行前面又有j个元素,故aij的前面一共有in+j个元素,设a00的内存地址为LOC(a00),则aij的内存地址按等差数列计算为LOC(aij)=LOC(a00)+(in+j)L。,5.2.2 列优先顺序,1存放规则 列优先顺序也称为高下标优先或右边下标优先于左边下标。具体实现时,按列号从小到大的顺序,先将第一列中元素全部存放好,再存放第二列元素,第三列元素,依次类推 例如,对前面提到的Amn二维数组,可以按如下的形式存放到内存:a00, a10, am-10, a01,a11, , am-1 1, a0 m-1,a1m-1,., am-1 n-1。
7、即二维数组按列优先存放到内存后,也变成了一个线性序列(线性表)。 2地址计算 同样与行优先存放类似,若知道第一个元素的内存地址,则同样可以求得按列优存放的某一元素aij的地址。 对二维数组有:LOC(aij)=LOC(a00)+(jm+i)L,5.3 特殊矩阵及其压缩存储矩阵(Matrix)是一个二维数组,它是很多科学与工程计算问题中研究的数学对象。矩阵可以用行优先或列优先方法顺序存放到内存中,但是,当矩阵的阶数很大时将会占较多存储单元。而当里面的元素分布呈现某种规律时,这时,从节约存储单元出发,可考虑若干元素共用一个存储单元,即进行压缩存储。所谓压缩存储是指:为多个值相同的元素只分配一个存储
8、空间,值为零的元素不分配空间。但是压缩存储时,节约了存储单元,但怎样在压缩后找到某元素呢?因此还必须给出压缩前的下标和压缩后下标之间变换公式,才能使压缩存储变得有意义。,1对称矩阵 若一个n阶方阵A中元素满足下列条件: aij=aji 其中 0 i, jn-1 ,则称A为对称矩阵。 例如,图5-1是一个3*3的对称矩阵。,5.3.1 特殊矩阵,2三角矩阵 (1)上三角矩阵 即矩阵上三角部分元素是随机的,而下三角部分元素全部相同(为某常数C)或全为0,具体形式见图5-2(a)。,图5-1 一个对称矩阵,(2)下三角矩阵 即矩阵的下三角部分元素是随机的,而上三角部分元素全部相同(为某常数C)或全为
9、0,具体形式见图5-2(b)。(a)上三角矩阵 (b)下三角矩阵图5-2 三角矩阵,3对角矩阵 若矩阵中所有非零元素都集中在以主对角线为中心的带状区域中,区域外的值全为0,则称为对角矩阵。常见的有三对角矩阵、五对角矩阵、七对角矩阵等。 例如,图5-3为77的三对角矩阵(即有三条对角线上元素非0)。图5-3 一个77的三对角矩阵,5.3.2 压缩存储,(a)一个下三角矩阵(b)下三角矩阵的压缩存储形式 矩阵及用下三角压缩存储 图5-4 对称,3对角矩阵 我们仅讨论三对角矩阵的压缩存储,五对角矩阵,七对角矩阵等读者可以作类似分析。 在一个nn的三对角矩阵中,只有n+n-1+n-1个非零元素,故只需
10、3n-2个存储单元即可,零元已不占用存储单元。 故可将nn三对角矩阵A压缩存放到只有3n-2个存储单元的s向量中,假设仍按行优先顺序存放,,sk与aij的对应关系为:3i或 3j 当 i=jk= 3i+1或3j-2 当i=j-13i-1 或3j+2 当 i=j+1,5.4 稀疏矩阵在特殊矩阵中,元素的分布呈现某种规律,故一定能找到一种合适的方法,将它们进行压缩存放。但是,在实际应用中,我们还经常会遇到一类矩阵:其矩阵阶数很大,非零元个数较少,零元很多,但非零元的排列没有一定规律,我们称这一类矩阵为稀疏矩阵。按照压缩存储的概念,要存放稀疏矩阵的元素,由于没有某种规律,除存放非零元的值外,还必须存
11、储适当的辅助信息,才能迅速确定一个非零元是矩阵中的哪一个位置上的元素。下面将介绍稀疏矩阵的几种存储方法及一些算法的实现。,5.4.1 稀疏矩阵的存储,1三元组表在压缩存放稀疏矩阵的非零元同时,若还存放此非零元所在的行号和列号,则称为三元组表法,即称稀疏矩阵可用三元组表进行压缩存储,但它是一种顺序存储(按行优先顺序存放)。一个非零元有行号、列号、值,为一个三元组,整个稀疏矩阵中非零元的三元组合起来称为三元组表。 此时,数据类型可描述如下: #define maxsize 100 /*定义非零元的最大数目*/ struct node /*定义一个三元组*/ int i , j; /*非零元行、列号
12、*/int v; /*非零元值*/ ; struct sparmatrix /*定义稀疏矩阵*/ int rows,cols ; /*稀疏矩阵行、列数*/int terms; /*稀疏矩阵非零元个数*/node data maxsize; /*三元组表*/ ;,2带行指针的链表把具有相同行号的非零元用一个单链表连接起来,稀疏矩阵中的若干行组成若干个单链表,合起来称为带行指针的链表。例如,图5-6的稀疏矩阵M的带行指针的链表描述形式见图5-9。,图5-9 带行指针的链表,3十字链表稀疏矩阵中的链接存储中的一种较好的存储方法,在该方法中,每一个非零元用一个结点表示,结点中除了表示非零元所在的行、列
13、和值的三元组(i,j,v)外,还需增加两个链域:行指针域(rptr),用来指向本行中下一个非零元素;列指针域(cptr),用来指向本列中下一个非零元素。稀疏矩阵中同一行的非零元通过向右的rptr指针链接成一个带表头结点的循环链表。同一列的非零元也通过cptr指针链接成一个带表头结点的循环链表。因此,每个非零元既是第i行循环链表中的一个结点,又是第j列循环链表中的一个结点,相当于处在一个十字交叉路口,故称链表为十字链表。为了运算方便,我们规定行、列循环链表的表头结点和表示非零元的结点一样,也定为五个域,且规定行、列、域值为0(因此,为了使表头结点和表示非零元的表结点不发生混淆,三元组中,输入行和
14、列的下标不能从0开始!而必须从1开始),并且将所有的行、列链表和头结点一起链成一个循环链表。,在行(列)表头结点中,行、列域的值都为0,故两组表头结点可以共用,即第i行链表和第i列链表共用一个表头结点,这些表头结点本身又可以通过V域(非零元值域,但在表头结点中为next,指向下一个表头结点)相链接。另外,再增加一个附加结点(由指针hm指示,行、列域分别为稀疏矩阵的行、列数目),附加结点指向第一个表头结点,则整个十字链表可由hm指针惟一确定。 例如,图5-6的稀疏矩阵M的十字链表描述形式见图5-10。 十字链表的数据类型描述如下: struct linknode int i, j;struct
15、linknode *cptr, *rptr;union vnext /*定义一个共用体*/ int v; /*表结点使用V域,表示非零元值*/struct linknode * next; /*表头结点使用next域*/ k; ,图5-10 稀疏矩阵的十字链表,5.4.2 稀疏矩阵的运算,1稀疏矩阵的转置运算 下面将讨论三元组表上如何实现稀疏矩阵的转置运算。 转置是矩阵中最简单的一种运算。对于一个mn的矩阵A,它的转置矩阵B是一个nm的,且Bij=Aji,0in,0jm。例如,图5-6给出的M矩阵和图5-7给出的N矩阵互为转置矩阵。 在三元组表表示的稀疏矩阵中,怎样求得它的转置呢?从转置的性质
16、知道,将A转置为B,就是将A的三元组表a.data变为B的三元组表b.data,这时可以将a.data中i和j的值互换,则得到的b.data是一个按列优先顺序排列的三元组表,再将它的顺序适当调整,变成行优先排列,即得到转置矩阵B。下面将用两种方法处理: (1)按照A的列序进行转置 由于A的列即为B的行,在a.data中,按列扫描,则得到的b.data必按行优先存放。但为了找到A的每一列中所有的非零的元素,每次都必须从头到尾扫描A的三元组表(有多少列,则扫描多少遍),这时算法描述如下:,#define maxsize 100 struct node int i,j; /*定义三元组的行、列号*/
17、int v; /*三元组的值*/;struct sparmatrixint rows,cols; /*稀疏矩阵的行、列数*/nt terms; /*稀疏矩阵的非零元个数*/struct node datamaxsize; /*存放稀疏矩阵的三元组表*/; void transpose(struct sparmatrix a) struct sparmatrix b; /*b为a的转置*/int ano,bno=0,col,i;b.rows=a.cols; b.cols=a.rows;b.terms=a.terms; if (b.terms0) for ( col=0; cola.cols; c
18、ol+) /*按列号扫描*/for( ano=0;anoa.terms;ano+) /*对三元组扫描*/,if (a.dataano.j=col) /*进行转置*/ b.databno.j=a.dataano.i;b.databno.i=a.dataano.j;b.databno.v=a.dataano.v;bno+; for( i=0;ia.terms;i+) /*输出转置后的三元组结果*/printf(“%5d%5d%5dn“,b.datai.i,b.datai.j,b.datai.v); void main() int i;struct sparmatrix a;scanf(“%d%d%
19、d“, /*调用转置算法*/ ,分析这个算法,主要工作在col和ano二重循环上,故算法的时间复杂度为 O(a.cols*a.terms)。而通常的mn阶矩阵转置算法可描述为: for(col=0; coln; col+) for (row=0;rowm;row+) bcolrow=arowcol; 它的时间复杂度为O(mn)。而一般的稀疏矩阵中非零元个数a.terms远大于行数m,故压缩存储时,进行转置运算,虽然节省了存储单元,但增大了时间复杂度,故此算法仅适应于a.termsa.rows a.cols的情形。,(2)按照A的行序进行转置 即按a.data中三元组的次序进行转置,并将转置后的
20、三元组放入b中恰当的位置。若能在转置前求出矩阵A的每一列col(即B中每一行)的第一个非零元转置后在b.data中的正确位置potcol(0cola.cols),那么在对a.data的三元组依次作转置时,只要将三元组按列号col放置到b.datapotcol中,之后将potcol内容加1,以指示第col列的下一个非零元的正确位置。为了求得位置向量pot,只要先求出A的每一列中非零元个数numcol,然后利用下面公式:potcol=potcol-1+numcol-1 当1cola.cols,pot0=0,为了节省存储单元,记录每一列非零元个数的向量num可直接放入pot中,即上面的式子可以改为:
21、potcol=potcol-1+potcol,其中1colacols 。 于是可用上面公式进行迭代,依次求出其他列的第一个非零元素转置后在b.data中的位置potcol。例如,对前面图5-6给出的稀疏矩阵M,有: 每一列的非零元个数为 pot1=2 第0列非零元个数 pot2=2 第1列非零元个数 pot3=2 第2列非零元个数 pot4=1 第3列非零元个数 pot5=0 第4列非零元个数 pot6=1 第5列非零元个数 pot7=0 第6列非零元个数,每一列的第一个非零元的位置为 pot0=0 第0列第一个非零元位置 pot1=pot0+pot1=2 第1列第一个非零元位置 pot2=p
22、ot1+pot2=4 第2列第一个非零元位置 pot3=pot2+pot3=6 第3列第一个非零元位置 pot4=pot3+pot4=7 第4列第一个非零元位置 pot5=pot4+pot5=7 第5列第一个非零元位置 pot6=pot5+pot6=8 第6列第一个非零元位置,则M稀疏矩阵的转置矩阵N的三元组表很容易写出(见图5-8),算法描述如下: #define maxsize 100 struct node int i,j;int v;struct sparmatrixint rows,cols;int terms;struct node datamaxsize; void fastra
23、ns(struct sparmatrix a) struct sparmatrix b;int potmaxsize,col,ano,bno,t,i;b.rows=a.cols; b.cols=a.rows;b.terms=a.terms;if(b.terms0),for(col=0;col=a.cols;col+)potcol=0;for( t=0;ta.terms;t+) /*求出每一列的非零元个数*/ col=a.datat.j;potcol+1=potcol+1+1;pot0=0; /*求出每一列的第一个非零元在转置后的位置*/ for(col=1;cola.cols;col+)pot
24、col=potcol-1+potcol;for( ano=0;anoa.terms;ano+) /*转置*/ col=a.dataano.j;bno=potcol;b.databno.j=a.dataano.i;b.databno.i=a.dataano.j;b.databno.v=a.dataano.v;,void main() struct sparmatrix a;int i;/*输入稀疏矩阵的行、列数及非零元的个数*/scanf(“%d%d%d“, 该算法比按列转置多用了辅助向量空间pot,但它的时间为四个单循环,故总的时间复杂度为O(a.cols+a.terms),比按列转置算法效率
25、要高。,2稀疏矩阵的相加运算 当稀疏矩阵用三元组表进行相加时,有可能出现非零元素的位置变动,这时候,不宜采用三元组表作存储结构,而应该采用十字链表较方便。 (1)十字链表的建立 下面分两步讨论十字链表的建立算法: 第一步,建立表头的循环链表: 依次输入矩阵的行、列数和非零元素个数:m,n和t。由于行、列链表共享一组表头结点,因此,表头结点的个数应该是矩阵中行、列数中较大的一个。假设用s 表示个数,即s=max(m,n)。依次建立总表头结点(由hm指针指向)和s个行、列表头结点,并使用next域使s+1个头结点组成一个循环链表,总表头结点的行、列域分别为稀疏矩阵的行、列数目,s个表头结点的行列域
26、分别为0。并且开始时,每一个行、列链表均是一个空的循环链表,即s个行、列表头结点中的行、列指针域rptr和cptr均指向头结点本身。 第二步,生成表中结点: 依次输入t个非零元素的三元组(i,j,v),生成一个结点,并将它插入到第i行链表和第j列链表中的正确位置上,使第i个行链表和第j个列链表变成一个非空的循环链表。 在十字链表的建立算法中,建表头结点,时间复杂度为O(s),插入t个非零元结点到相应的行、列链表的时间复杂度为O(t*s),故算法的总的时间复杂度为O(t*s)。,(2)用十字链表实现稀疏矩阵相加运算 假设原来有两个稀疏矩阵A和B,如何实现运算A=A+B呢?假设原来A和B都用十字链
27、表作存储结构,现要求将B中结点合并到A中,合并后的结果有三种可能:1)结果为aij+bij;2)aij(bij=0);3)bij(aij=0)。由此可知当将B加到A中去时,对A矩阵的十字链表来说,或者是改变结点的v域值(aij+bij0),或者不变(bij=0),或者插入一个新结点(aij=0),还可能是删除一个结点(aij+bij=0)。 于是整个运算过程可以从矩阵的第一行起逐行进行。对每一行都从行表头出发分别找到A和B在该行中的第一个非零元结点后开始比较,然后按上述四种不同情况分别处理之。若pa和pb分别指向A和B的十字链表中行值相同的两个结点,则4种情况描述为: 1)pa-j=pb-j
28、且pa-k.v+pb-k.v0,则只要将aij+bij的值送到 pa所指结点的值域中即可,其他所有域的值都不变化。 2)pa-j=pb-j且pa-k.v+pb-k.v=0,则需要在A矩阵的链表中删除pa所指的结点。这时,需改变同一行中前一结点的rptr域值,以及同一列中前一结点的cptr域值。 3)pa-jj且pa-j0,则只要将pa指针往右推进一步,并重新加以比较即可。 4)pa-jpb-j或 pa-j=0,则需在A矩阵的链表中插入pb所指结点。,下面将对矩阵B加到矩阵A上面的操作过程大致描述如下: 设ha和hb分别为表示矩阵A和B的十字链表的总表头;ca和cb分别为指向A和B的行链表的表头
29、结点,其初始状态为:ca=ha-k.next ; cb=hb-k.next; pa和pb分别为指向A和B的链表中结点的指针。开始时, pa=ca-rptr; pb=cb-rptr; 然后按下列步骤执行: 当ca-i=0时,重复执行、步,否则,算法结束; 当pb-j0时,重复执行步,否则转第步; 比较两个结点的列序号,分三种情形: a若pa-jj 且pa-j0,则令pa指向本行下一结点,即 qa=pa; pa=pa-rptr; 转步; b若pa-jpb-j或pa-j=0,则需在A中插入一个结点。假设新结点的地址为p,则A的行表中指针变化为:qa-rptr=p;p-rptr=pa; 同样,A的列表
30、中指针也应作相应改变,用hlj指向本列中上一个结点,则A的列表中指针变化为:p-cptr=hlj-cptr; hlj-cptr=p; 转第步; c若pa-j=pb-j,则将B的值加上去,即pa-k.v=pa-k.v+bp-k.v,此时若 pa-k.v0,则指针不变,否则,删除A中该结点,于是行表中指针变为:qa-rptr=pa-rptr; 同时,为了改变列表中的指针,需要先找同列中上一个结点,用hlj表示,然后令hlj-cptr=pa-cptr,转第步。 一行中元素处理完毕后,按着处理下一行,指针变化为:ca=ca-k.next; cb=cb-k.next;转第1)步。,5.5 广义表,5.5
31、.1 基本概念广义表是线性表的推广。线性表中的元素仅限于原子项,即不可以再分,而广义表中的元素既可以是原子项,也可以是子表(另一个线性表)。,1广义表的定义广义表是n0个元素a1,a2,an的有限序列,其中每一个ai或者是原子,或者是一个子表。广义表通常记为LS=(a1,a2,an),其中LS为广义表的名字,n为广义表的长度, 每一个ai为广义表的元素。但在习惯中,一般用大写字母表示广义表,小写字母表示原子。,2广义表举例 (1)A=( ),A为空表,长度为0。 (2)B=(a,(b,c)),B是长度为2的广义表,第一项为原子,第二项为子表。 (3)C=(x,y,z),C是长度为3的广义表,每
32、一项都是原子。 (4)D=(B,C),D是长度为2的广义表,每一项都是上面提到的子表。 (5)E=(a,E),是长度为2的广义表,第一项为原子,第二项为它本身。,3广义表的表示方法 (1)用LS=(a1,a2,an)形式,其中每一个ai为原子或广义表。 例如:A=(b,c)B=(a,A)E=(a,E) 都是广义表。 (2)将广义表中所有子表写到原子形式,并利用圆括号嵌套 例如,上面提到的广义表A、B、E可以描述为: A(b,c) B(a,A(b,c) E(a,E(a,E()) (3)将广义表用树和图来描述 上面提到的广义表A、B、E的描述见图5-11。,4广义表的深度一个广义表的深度是指该广义
33、表展开后所含括号的层数。例如,A=(b,c)的深度为1,B=(a,A)的深度为2,C=(f,B,h)的深度为3;.(a)A=(b,c) (b)B=(a,A) (c)C=(A,B) 图5-11 广义表用树或图来表示,5广义表的分类 (1)线性表:元素全部是原子的广义表。 (2)纯表:与树对应的广义表,见图5-11的(a)和(b)。 (3)再入表:与图对应的广义表(允许结点共享),见图5-11的(c)。 (4)递归表:允许有递归关系的广义表,例如E=(a,E)。 这四种表的关系满足: 递归表再入表 纯表 线性表,5.5.2 存储结构 由于广义表的元素类型不一定相同,因此,难以用顺序结构存储表中元素
34、,通常采用链接存储方法来存储广义表中元素,并称之为广义链表。常见的表示方法,1单链表表示法 即模仿线性表的单链表结构,每个原子结点只有一个链域link,结点结构是:其中atom是标志域,若为0,则表示为子表,若为1,则表示为原子,data/slink域用来存放原子值或子表的指针, link存放下一个元素的地址。 数据类型描述如下: #define elemtype char struct node1 int atom;struct node1 *link; union struct node1 *slink;elemtype data; ds;,例如,设L=(a,b)A=(x,L)=(x,(a
35、,b)B=(A,y)=(x,(a,b),y)C=(A,B)=(x,(a,b),(x,(a,b),y) 可用如图5-12的结构描述广义表C,设头指针为hc。 用此方法存储有两个缺点:其一,在某一个表(或子表)中开始处插入或删除一个结点,修改的指针较多,耗费大量时间;其二,删除一个子表后,它的空间不能很好地回收。,图5-12 广义表的单链表表示法,2双链表表示法 每个结点含有两个指针及一个数据域,每个结点的结构如下:其中,link1指向该结点子表,link2指向该结点后继。 数据类型描述如下: struct node2 elemtype data;struct node2 *link1,*link
36、2; 例如,对图5-12用单链表表示的广义表C,可用如图5-13所示的双链表方法表示。图5-13 广义表的双链表表示法,5.5.3 基本运算 广义表有许多运算,现仅介绍如下几种:,1求广义表的深度depth(LS) 假设广义表以刚才的单链表表示法作存储结构,则它的深度可以递归求出。即广义表的深度等于它的所有子表的最大深度加1,设dep表示任一子表的深度,max表示所有子表中表的最大深度,则广义表的深度为:depth=max+1,算法描述如下: int depth(struct node1 *LS) int max=0,dep;while(LS!=NULL) if(LS-atom=0) /有子表
37、 dep=depth(LS-ds.slink);if(depmax) max=dep;LS=LS-link;return max+1; 该算法的时间复杂度为O(n)。,2广义表的建立creat(LS) 假设广义表以单链表的形式存储,广义表的元素类型elemtype 为字符型char,广义表由键盘输入,假定全部为字母,输入格式为:元素之间用逗号分隔,表元素的起止符号分别为左、右圆括号,空表在其圆括号内使用一个“#”字符表示,最后使用一个分号作为整个广义表的结束。,struct node1 *creat() struct node1 *LS;char ch;scanf(“%c“, ,3输出广义表p
38、rint(LS) void print(struct node1 *LS) if(LS-atom=0)printf(“(“);if(LS-ds.link=NULL)printf(“#“);elseprint(LS-ds.slink);elseprintf(“%c“,LS-ds.data);if(LS-atom=0)printf(“)“);if(LS-link!=NULL)print(“,“);print(LS-link); ,4.取表头运算head 若广义表LS=(a1,a2,an),则head(LS)= a1。 取表头运算得到的结果可以是原子,也可以是一个子表。 例如,head(a1,a2,
39、a3,a4)=a1,head(a1,a2),(a3,a4),a5)=(a1,a2)。 5.取表尾运算tail 若广义表LS=(a1,a2,an),则tail(LS)= (a2,a3,an)。 即取表尾运算得到的结果是除表头以外的所有元素构成的子表,取表尾运算得到的结果一定是一个子表。,本章小结 1多维数组在计算机中有两种存放形式:行优先和列优先。 2行优先规则是左边下标变化最慢,右边下标变化最快,右边下标变化一遍,与之相邻的左边下标才变化一次。 3列优先规则是右边下标变化最慢,左边下标变化最快,左边下标变化一遍,与之相邻的右边下标才变化一次。 4对称矩阵关于主对角线对称。为节省存储单元,可以进
40、行压缩存储,对角线以上的元素和对角线以下的元素可以共用存储单元,故nn的对称矩阵只需 个存储单元即可。 5三角矩阵有上三角矩阵和下三角矩阵之分,为节省内存单元,可以采用压缩存储,nn的三角矩阵进行压缩存储时,只需+1个存储单元即可。 6稀疏矩阵的非零元排列无任何规律,为节省内存单元,进行压缩存储时,可以采用三元组表示方法,即存储非零元素的行号、列号和值。若干个非零元有若干个三元组,若干个三元组称为三元组表。 7广义表为线性表的推广,里面的元素可以为原子,也可以为子表,故广义表的存储采用动态链表较方便。,1按行优先存储方式,写出三维数组A324在内存中的排列顺序及地址计算公式(假设每个数组元素占
41、用L个字节的内存单元,a000的内存地址为Loc(a000))。 2按列优先存储方式,写出三维数组A324在内存中的排列顺序及地址计算公式(假设每个数组元素占用L个字节的内存单元,a000的内存地址为Loc(a000))。. 3设有上三角矩阵Ann,它的下三角部分全为0,将其上三角元素按行优先存储方式存入数组Bm中(m足够大),使得Bk=aij,且有k=f1(i)+f2(j)+c。试推出函数f1、f2及常数c(要求f1和f2中不含常数项)。 4若矩阵Amn中的某个元素Aij是第i行中的最小值,同时又是第j列中的最大值,则称此元素为该矩阵中的一个马鞍点。假设以二维数组存储矩阵Amn,试编写求出矩
42、阵中所有马鞍点的算法,并分析你的算法在最坏情况下的时间复杂度。 5试写一个算法,查找十字链表中某一非零元素x。,习题五,6给定矩阵A如下,写出它的三元组表和十字链表。7对上题的矩阵,画出它的带行指针的链表,并给出算法来建立它。 8试编写一个以三元组形式输出用十字链表表示的稀疏矩阵中非零元素及其下标的算法。 9给定一个稀疏矩阵如下: 用快速转置实现该稀疏矩阵的转置,写出转置前后的三元组表及开始的每一列第一个非零元的位置potcol的值。,10广义表是线性结构还是非线性结构?为什么? 11求下列广义表的运算的结果 (1)head(p,h,w) (2)tail (b,k,p,h) (3)head(a,b),(c,d) (4)tail (b),(c,d) (5)head (tail(a,b),(c,d) (6)tail (head (a,b),(c,d) (7)head (tail (head( (a,d),(c,d) (8)tail (head (tail (a,b),(c,d) 12画出下列广义表的图形表示 (1)A(b,(A,a,C(A),C(A) (2)D(A( ),B(e),C(a,L(b,c,d) 13画出第12题的广义表的单链表表示法和双链表表示法。,