收藏 分享(赏)

数字电子技术基础第四版55031.ppt

上传人:dzzj200808 文档编号:3317949 上传时间:2018-10-12 格式:PPT 页数:90 大小:1.48MB
下载 相关 举报
数字电子技术基础第四版55031.ppt_第1页
第1页 / 共90页
数字电子技术基础第四版55031.ppt_第2页
第2页 / 共90页
数字电子技术基础第四版55031.ppt_第3页
第3页 / 共90页
数字电子技术基础第四版55031.ppt_第4页
第4页 / 共90页
数字电子技术基础第四版55031.ppt_第5页
第5页 / 共90页
点击查看更多>>
资源描述

1、数字电子技术基础(第四版)教学课件 辽宁石油化工大学 杨冶杰,联系地址:辽宁石油化工大学电工电子教学系 邮政编码:113001电子信箱: 联系电话:(0413)6865171,第一章 逻辑代数基础,1.1 概述,1.1.1 数字量和模拟量 数字量:变化在时间上和数量上都是不连续的。(存在一个最小数量单位) 模拟量:数字量以外的物理量。数字电路和模拟电路:工作信号,研究的对象,分析/设计方法以及所用的数学工具都有显著的不同,1.1.1 数字量和模拟量,电子电路的作用:处理信息 模拟电路:用连续的模拟电压/流值来表示信息,1.1.1 数字量和模拟量,电子电路的作用:处理信息 数字电路:用一个分散的

2、电压序列来表示信息,1.1.2 数制和码制,例如: 011876数制:表示数量的规则 码制:表示事物的规则,1.1.2 数制和码制,数制:每一位的构成从低位向高位的进位规则我们常用到的: 十进制,二进制,八进制,十六进制,十进制,二进制,八进制,十六进制,逢二进一,逢八进一,逢十进一,逢十六进一,例,1.1.2 数制和码制,码制用不同数码表示不同事物时遵循的规则 例如: 学号,身份证号,运动员号目前,数字电路中都采用二进制和基于二进制基础上的八、十六和二-十进制。 表示数量时称二进制 表示事物时称二值逻辑,1.1.3 算术运算和逻辑运算,算术运算二进制数的0/1可以表示数量,进行加,减,乘,除

3、等运算二进制数的正、负号也是用0/1表示的。 在定点运算中,最高位为符号位(0为正,1为负) 如 +89 = (0 1011001)-89 = (1 1011001),二进制数的补码:,最高位为符号位(0为正,1为负) 正数的补码和它的原码相同 负数的补码 = 数值位逐位求反 + 1如 +5 = (0 0101)-5 = (1 1011)通过补码,将减一个数用加上该数的补码来实现,7 4 = 37 + 8 = 3 (舍弃进位)4 + 8 = 12 产生进位的模 8是-4对模数12的补码,1110 0110 = 1000(14 - 6 = 8)1110 + 1010 = 11000 =1000(

4、舍弃进位)(14 + 10 = 8)0110 + 1010 =24 1010是- 0110对模24 (16) 的补码,16,8,4,12,14,2,6,10,1.1.3 算术运算和逻辑运算,逻辑运算当二进制代码表示不同逻辑状态时,可以按一定的规则进行推理运算。,1.2 逻辑代数中的三种基本运算,基本概念逻辑: 事物的因果关系逻辑运算的数学基础: 逻辑代数在二值逻辑中的变量取值: 0/1,1.2 逻辑代数中的三种基本运算,与(AND) 或(OR) 非(NOT),以A=1表示开关A合上,A=0表示开关A断开; 以Y=1表示灯亮,Y=0表示等不亮; 三种电路的因果关系不同:,与,条件同时具备,结果发

5、生 Y=A AND B = A&B=AB=AB,或,条件之一具备,结果发生 Y= A OR B = A+B,非,条件不具备,结果发生,几种常用的复合逻辑运算,与非 或非 与或非,几种常用的复合逻辑运算,异或 Y= A B,几种常用的复合逻辑运算,同或 Y= A B,1.3.1 基本公式1.3.2 常用公式,1.3 逻辑代数的基本公式和常用公式,1.3.1 基本公式,根据与、或、非的定义,得表1.3.1的布尔恒等式,证明方法:推演 真值表,公式(17)的证明(公式推演法):,公式(17)的证明(真值表法):,1.3.2 逻辑代数的常用公式,1.4 逻辑代数的基本定理,1.4.1 代入定理-在任何

6、一个包含A的逻辑等式中,若以另外一个逻辑式代入式中A的位置,则等式依然成立。,1.4.1 代入定理,应用举例:式17 A+BC = (A+B)(A+C) A+B(CD) = (A+B)(A+CD)= (A+B)(A+C)(A+D),1.4.1 代入定理,应用举例:式 8,1.4 逻辑代数的基本定理,1.4.2 反演定理-对任一逻辑式,变换顺序 先括号,然后乘,最后加,不属于单个变量的上的反号保留不变,1.4.2 反演定理,应用举例:,1.5.1 逻辑函数 Y=F(A,B,C,)-若以逻辑变量为输入,运算结果为输出,则输入变量值确定以后,输出的取值也随之而定。输入/输出之间是一种函数关系。注:在

7、二值逻辑中,输入/输出都只有两种取值0/1。,1.5 逻辑函数及其表示方法,1.5.2 逻辑函数的表示方法,真值表 逻辑式 逻辑图 波形图 卡诺图 计算机软件中的描述方式各种表示方法之间可以相互转换,真值表,逻辑式将输入/输出之间的逻辑关系用与/或/非的运算式表示就得到逻辑式。逻辑图用逻辑图形符号表示逻辑运算关系,与逻辑电路的实现相对应。波形图将输入变量所有取值可能与对应输出按时间顺序排列起来画成时间波形。,卡诺图EDA中的描述方式HDL (Hardware Description Language)VHDL (Very High Speed Integrated Circuit )Veril

8、og HDLEDIFDTIF。,举例:举重裁判电路,各种表现形式的相互转换:,真值表 逻辑式 例:奇偶判别函数的真值表A=0,B=1,C=1使 ABC=1 A=1,B=0,C=1使 ABC=1 A=1,B=1,C=0使 ABC=1这三种取值的任何一种都使Y=1, 所以 Y= ?,真值表 逻辑式:找出真值表中使 Y=1 的输入变量取值组合 每组输入变量取值对应一个乘积项,其中取值为1的写原变量,取值为0的写反变量 将这些变量相加即得 Y把输入变量取值的所有组合逐个逻辑式中求出Y,列表,逻辑式 逻辑图1. 用图形符号代替逻辑式中的逻辑运算符,逻辑式 逻辑图1. 用图形符号代替逻辑式中的逻辑运算符

9、2. 从输入到输出逐级写出每个图形符号对应的逻辑运算式。,最小项 m: m是乘积项 包含n个因子 n个变量均以原变量和反变量的形式在m中出现一次,对于n变量函数 有2n个最小项,1.5.3 逻辑函数的标准形式: 最小项之和 最大项之积,最小项举例:,两变量A, B的最小项三变量A,B,C的最小项,最小项的编号:,最小项的性质,在输入变量任一取值下,有且仅有一个最小项的值为1 全体最小项之和为1 任何两个最小项之积为0 两个相邻的最小项之和可以合并,消去一对因子,只留下公共因子。-相邻:仅一个变量不同的最小项如,逻辑函数最小项之和的形式:,例:,利用公式 可将任何一个函数化为,逻辑函数最小项之和

10、的形式:,例:,利用公式 可将任何一个函数化为,逻辑函数最小项之和的形式:,例:,利用公式 可将任何一个函数化为,逻辑函数最小项之和的形式:,例:,逻辑函数最小项之和的形式:,例:,逻辑函数最小项之和的形式:,例:,逻辑函数最小项之和的形式:,例:,最大项:,M是相加项 包含n个因子 n个变量均以原变量和反变量的形式在M中出现一次如:两变量A, B的最大项,对于n变量函数 2n个,最大项的性质,在输入变量任一取值下,有且仅有一个最大项的值为0 全体最大项之积为0 任何两个最大项之和为1,1.6 逻辑函数的公式化简法,1.6.1 逻辑函数的最简形式最简与或-包含的乘积项已经最少,每个乘积项的因子

11、也最少,称为最简的与-或逻辑式。,1.6.2 公式化简法 反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。例:,1.6.2 公式化简法 反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。例:,1.6.2 公式化简法 反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。例:,1.6.2 公式化简法 反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。例:,1.6.2 公式化简法 反复应用基本公式和常用公式,消去多余的乘积项和多余的因子。例:,1.7 逻辑函数的卡诺图化简,1.7.1 逻辑函数的卡诺图表示法实质:将逻辑函数的最小项之和的以图形的方式表示出来以2n个小方

12、块分别代表 n 变量的所有最小项,并将它们排列成矩阵,而且使几何位置相邻的两个最小项在逻辑上也是相邻的(只有一个变量不同),就得到表示n变量全部最小项的卡诺图。,表示最小项的卡诺图,2变量卡诺图 3变量的卡诺图,4变量的卡诺图,表示最小项的卡诺图,2变量卡诺图 3变量的卡诺图,4变量的卡诺图,表示最小项的卡诺图,2变量卡诺图 3变量的卡诺图,4变量的卡诺图,5变量的卡诺图,用卡诺图表示逻辑函数,将函数表示为最小项之和的形式在卡诺图上与这些最小项对应的位置上添入1,其余地方添0,用卡诺图表示逻辑函数,例:,用卡诺图表示逻辑函数,1.7.2 用卡诺图化简函数,依据:具有相邻性的最小项可合并,消去不

13、同因子。在卡诺图中,最小项的相邻性可以从图形中直观地反映出来。,合并最小项的原则:两个相邻最小项可合并为一项,消去一对因子四个排成矩形的相邻最小项可合并为一项,消去两对因子八个相邻最小项可合并为一项,消去三对因子,两个相邻最小项可合并为一项, 消去一对因子,化简步骤:-用卡诺图表示逻辑函数-找出可合并的最小项-化简后的乘积项相加(项数最少,每项因子最少),1.7.2 用卡诺图化简函数,卡诺图化简的原则,化简后的乘积项应包含函数式的所有最小项,即覆盖图中所有的1乘积项的数目最少,即圈成的矩形最少每个乘积项因子最少,即圈成的矩形最大,例:,A,BC,例:,A,BC,例:,A,BC,例:,化 简 结

14、 果 不 唯 一,例:,AB,CD,例:,AB,CD,约束项 任意项逻辑函数中的无关项:约束项和任意项可以写入函数式,也可不包含在函数式中,因此统称为无关项。,在逻辑函数中,对输入变量取值的限制,在这些取值下为1的最小项称为约束项,在输入变量某些取值下,函数值为1或为0不影响逻辑电路的功能,在这些取值下为1的最小项称为任意项,1.8具有无关项的函数及其化简,1.8.2 无关项在逻辑函数化简中的应用,合理地利用无关项,可得更简单的化简结果加入(或去掉)无关项,应使化简后的项数最少,每项因子最少.从卡诺图上直观地看,加入无关项的目的是为矩形圈最大,矩形组合数最少,AB,CD,AB,CD,AB,CD,例:,AB,CD,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报