1、 38 null 7 2010 M null 7 null null null S null / null v null null null (1 S )J. Huazhong Univ. of Sci. ; L ; f ; Z ; T m s | : U448.27null null D S : Anull null c I | : 1671null4512(2010)07null0049null04An accurate method for determining unstressed cablelength in long span cable stayed bridgeWang Fe
2、ng null LiuMuyu(HubeiKey Laboratory of Roadway Bridge and Structure Engineering, WuhanUniversity of Technology, Wuhan 430070, China)Abstract: In order to determinate unstressed cable length and realize the initial configuration of longspan cablestayed bridge, an accurate solution method of unstresse
3、d cable length is proposed based onthe static equilibrium equations of an centenary element of a stay cable. Through an explicit expresnullsion of cable end tension force, the characteristicparameter constraint equations are establishedundercable tension force known, and the iterative formulasare gi
4、ven for an accurate solution methodofunnullstressed cable length. The unstressedcable lengths of onebuilding long span cable stayedbridgewerecalculated, the results show the reliability ofthe method throughcontrastedwith analyticsolution andErnst method. The solutions can be directly applied in engi
5、neering design when the parameters aregiven by design.Key words: cable stayed bridge; unstressed cable length; catenary element; cable end tension force;constraint equation; iterative formulasnull null | B B | B! 9 1 5 . W 1 “ Y V H q a 1“ # 9 T ,y 7 9 Z F p 5 1 , 1 Y V 9 ? . D 2 5 s Y L a=s E a ? E
6、 p , 9 H ( | ? H , | ? M H , l , . ? 6,7 , 6 t Z E ( L ( , P e ,9 3 9 8 . L ,4 B | p Z E , + 9 T 9 ( ,y X f H | + Z , p HE | 5 .1null L 1.1null L m 1 U | L , s 9m 1null L U i m / L : a. X , ? s 7 ? s F ; b. L , M 1 “ X p ; c. “ , s ( s # O | !(nulln+ 1)| #1 H ,| / y 0 l B ,i _ c 9 . #1 ,#2 K ,#1 #2
7、Y 5 ,B | 0.0010.0001.1 p 0 #% % 1, # / y0 / .B 7 S H V e | = 1, s h l ,Y V 9 p null , V T(7) p L s0. 4 9 Z E r , Matlab7.1I 9 . D 4 9 Z E . + : E= 1.31 A= 5. 48 ( q= 46.11 N/m. 9 sY :l= 100 m, h= 10 m, f Tj = 12kN; l= 10 m,h= 300 m, f Tj = 30 kN;9 T V 1 U .V 1null 9 T 1I | Es0/ m Q D 4 Es0/m Q 1 101
8、.151 187 1 101.152 447 122 300.041 900 4 300.075 510 12null null V 1 T 1 V , D 4 Ridders ? E E M 1 , 9 l y ,7 O 9 .3null y q = v B , (90+160+ 616+ 616+ 160+ 90)m | B , B 1 732 m, B z 32.3 m, 3.5m, 8 “ . 90 mH t T r : , 3 r s .| 9 132 , S 13. 5 m, r 8.0 m, 21& 2 m. | H t 22 9 . 4 Z E | B H 22 | B (L
9、U S M )/ s 9 , T n V 2, H E r E 9 T . L 1 s , r E Z E | M E . V 2 T 1 V : a. B ,X H q / | , Z E T E T # r E V 2null 9 T # 1 | B /kN /m E r E Z E 1 2943 117. 2447 117. 244 8 0.000 1 117.244 8 0.000 12 2969 122. 1252 122. 125 3 0.000 1 122.125 4 0.000 23 3025 128. 2990 128. 299 1 0.000 1 128.299 1 0.0
10、00 14 3103 135. 5275 135. 527 6 0.000 1 135.527 6 0.000 15 3210 143. 6771 143. 677 2 0.000 1 143.677 1 0.000 06 3277 152. 6801 152. 680 3 0.000 2 152.680 2 0.000 17 3418 162. 2552 162. 255 3 0.000 1 162.255 2 0.000 08 3577 172. 3659 172. 366 0 0.000 1 172.366 0 0.000 151 7 null null null : | B p Z E
11、 null null null null V 2null 9 T # 1 | B /kN /m E r E Z E 9 3744 182. 9868 182. 987 0 0.000 2 182.986 9 0.000 110 3975 193. 9154 193. 915 5 0.000 1 193.915 5 0.000 111 4033 205. 2692 205. 269 4 0.000 2 205.269 3 0.000 112 4217 216. 7922 216. 792 4 0.000 2 216.792 3 0.000 113 4401 228. 5392 228. 539
12、4 0.000 2 228.539 3 0.000 114 4555 240. 5580 240. 558 1 0.000 1 240.558 0 0.000 015 4847 252. 6483 252. 648 5 0.000 2 252.648 4 0.000 116 5029 264. 8961 264. 896 3 0.000 2 264.896 2 0.000 117 5206 277. 4192 277. 419 5 0.000 3 277.419 3 0.000 118 5365 289. 9101 289. 910 5 0.000 4 289.910 2 0.000 119
13、5617 302. 4784 302. 478 9 0.000 5 302.478 6 0.000 220 5741 315. 2245 315. 224 7 0.000 2 315.224 6 0.000 121 5855 327. 9736 327. 974 0 0.000 4 327.973 8 0.000 222 5197 340. 8485 340. 848 8 0.000 3 340.848 6 0.000 1T ( B . b. r E | B B 9 1 p , H 9 V 9 T I .m 3 m 4 w L , mV :a. “ | 117 m 9 F 340m, r E
14、9 v 9 v ,7 Z E 9 5 M , A l r E . b. “ | 9F , + d L M A , r E E | | v .m 3null r E 9 w Lm 4null Z E 9 w L I D1 Peyrot A H, GouloisA M. Analysisofflexibletransnullmission lines J. Journal of Structural Division,ASCE, 1978, 104: 763null779.2 _ , S , ? . s L E J. ,1999, 16(3): 130null134.3 null .C Q # |
15、 B d L s D. : 2 v r ! y , 2004.4 f , + C . J. b W , 2000, 6(2): 18null23.5 ? , ,| y . L s | s J. i y v , 2007, 29(6):31null34.6 W y S , A ,o y = . L E J. L l , 2005, 25(1): 28null32.7 ,o , Z H . J. 6 v : 1 S , 2005, 33(4): 445null450.8 , + C ,u I . p Z E J. b W , 2000, 6(2): 16null18.9 JayaramanH B,
16、 Knudson W C. A curvedelement forthe analysis of cable structuresJ. Computers &Structures, 1981, 14(3null4): 325null333.10 , b . w L % s d L K E J. , 2003, 20(1): 42null47.11 , / , null . r | B _ J. S / v : 1 S , 2008, 36(4): 115null118.52 null null null null S null / null v null null null (1 S ) null 38