收藏 分享(赏)

小学奥数知识点梳理1——数论.doc

上传人:weiwoduzun 文档编号:3297325 上传时间:2018-10-11 格式:DOC 页数:9 大小:230.50KB
下载 相关 举报
小学奥数知识点梳理1——数论.doc_第1页
第1页 / 共9页
小学奥数知识点梳理1——数论.doc_第2页
第2页 / 共9页
小学奥数知识点梳理1——数论.doc_第3页
第3页 / 共9页
小学奥数知识点梳理1——数论.doc_第4页
第4页 / 共9页
小学奥数知识点梳理1——数论.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、1数论:1、奇偶;2、整除;3、余数;4、质数合数5、约数倍数;6、平方;7、进制;8、位值。一、 奇偶:一个整数或为奇数,或为偶数,二者必居其一。奇偶数有如下运算性质:(1)奇数奇数=偶数 偶数偶数=偶数奇数偶数=奇数 偶数奇数=奇数(2)奇数个奇数的和(或差)为奇数;偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)总是偶数。(3)奇数奇数=奇数 偶数偶数=偶数奇数偶数=偶数(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数。(5)偶数的平方能被 4 整队,奇数的平方被 4 除余 1。上面几条规律可以概括成一条:几个整数相加减,运算结果的奇偶性由

2、算式中奇数的个数所确定;如果算式中共有偶数(注意:0 也是偶数)个奇数,那么结果一定是偶数;如果算式中共有奇数个奇数,那么运算结果一定是奇数。二、 整除:掌握能被 30 以下质数整除的数的特征。被 2 整除的数的特征为:它的个位数字之和可以被 2 整除.被 3(9)整除的数的特征为:它的各位数字之和可以被 3(9)整除。被 5 整除的数的特征为:它的个位数字之和可以被 5 整除。被 11 整除的数的特征是:它的奇位数字之和与偶位数字之和的差(大减小)能被 11 整除。下面研究被 7、11、13 整除的数的特征。有一关键性式子:71113=1001。判定某数能否被 7 或 11 或 13 整除,

3、只要把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小) ,看它是否被 7 或 11 或 13 整除。此法则可以连续使用。例:N=987654321.判定 N 是否被 11 整除。因为 654 不能被 11 整除,所以 N 不能被 11 整除。例:N215332.判定 N 是否被 7、11、13 整除。2由于 117139,所以 117 能被 13 整除,但不能被 7、11 整除,因此 N能被 13 整除,不能被 7、11 整除。此方法的优点在于当判定一个较大的数能否被 7 或 11 或 13 整除时,可用减法把这个大数化为一个至多是三位的数,然后再进行判定。被 17、19 整除

4、的简易判别法.回顾对比前面,由等式 100171113 的启发,才有简捷的“隔位相减判整除性”的方法。对于质数17:1759=1003 ,因此,判定一个数可否被 17 整除,只要将其末三位与前面隔开,看末三位数与前面隔出数的 3 倍的差(大减小)是否被 17 整除。例:N=31428576,判定 N 能否被 17 整除。而 429=2517+4,所以 N 不能被 17 整除。例:N2661027 能否被 17 整除?又 935=5517。所以 N 可被 17 整除。下面来推导被 19 整除的简易判别法。寻找关键性式子: 1953=1007.因此,判定一个数可否被 19 整除,只要将其末三位与前

5、面隔开,看末三位与前面隔出数的 7 倍的差(大减小)是否被 19 整除。例:N123456789 可否被 19 整除?又 6033119+14,所以 N 不能被 19 整除。例:N=6111426 可否被 19 整除?3又 57=319,所以 N 可被 19 整除:321654 19=6111426。下面来推导被 23、29 整除的简易判别法。寻找关键性式子,随着质数增大,简易法应该在 N 的位数多时起主要作用,现有2343510005,29345=10005,因此,判定一个数可否被 23 或 29 整除,只要将其末四位与前面隔开,看末四位与前面隔出数的 5 倍的差(大减小)是否被 23 或

6、29 整除。例:N6938801 能否被 23 或 29 整除?又 53362323223298,所以很快判出 N 可被 23 及 29 整除。三、余数三大余数定理:(1)余数的加法定理a 与 b 的和除以 c 的余数,等于 a,b 分别除以 c 的余数之和,或这个和除以c 的余数。例如:23,16 除以 5 的余数分别是 3 和 1,所以 23+1639 除以 5 的余数等于 4,即两个余数的和 3+1.当余数的和比除数大时,所求的余数等于余数之和再除以 c 的余数。例如:23,19 除以 5 的余数分别是 3 和 4,所以 23+1942 除以 5 的余数等于 3+4=7 除以 5 的余数

7、为 2(2)余数的减法定理a 与 b 的差除以 c 的余数,等于 a,b 分别除以 c 的余数之差。例如:23,16 除以 5 的余数分别是 3 和 1,所以 23167 除以 5 的余数等于2,两个余数差 312.当余数的差不够减时时,补上除数再减。例如:23,14 除以 5 的余数分别是 3 和 4,23149 除以 5 的余数等于 4,两个余数差为 3544(3)余数的乘法定理a 与 b 的乘积除以 c 的余数,等于 a,b 分别除以 c 的余数的积,或者这个积除以 c 所得的余数。例如:23,16 除以 5 的余数分别是 3 和 1,所以 2316 除以 5 的余数等于313 。4当余

8、数的和比除数大时,所求的余数等于余数之积再除以 c 的余数。例如:23,19 除以 5 的余数分别是 3 和 4,所以 2319 除以 5 的余数等于34 除以 5 的余数,即 2.乘方:如果 a 与 b 除以 m 的余数相同,那么 na与 b除以 m 的余数也相同(4)应用 :弃九法、同余定理应用一、弃九法原理在公元前 9 世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术 ,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式 1234891267891028931234 除以 9 的余数为 11

9、898 除以 9 的余数为 818922 除以 9 的余数为 4678967 除以 9 的余数为 7178902 除以 9 的余数为 0这些余数的和除以 9 的余数为 2而等式右边和除以 9 的余数为 3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以 9 的余数的和再除以 9 的余数一定与等式右边和除以 9 的余数相同。而我们在求一个自然数除以 9 所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以 9 的余数就可以了,在算的时候往往就是一个 9 一个 9 的找并且划去,所 以这

10、种方法被称作“弃九法” 。所以我们总结出弃九法原理:任何一个整数模 9 同余于它的各数位上数字之和。以后我们求一个整数被 9 除的余数,只要先计算这个整数各数位上数字之和,再求这个和被 9 除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式 9+9=9 时,等式两边的除以 9 的余数都是 0,但是显然算式是错误的。但是反过来,如果一个算式一定是正确的,那么它的等式 2 两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式谜问题。应用二、同余定

11、理:若两个整数 a、b 被自然数 m 除有相同的余数,那么称 a、b 对于模 m 同余,用式子表示为:ab ( mod m ),左边的式子叫做同余式。同余式读作:a 同余于 b,模 m。同余定理重要性质及推论:若两个数 a,b 除以同一个数 m 得到的余数相同,则 a,b 的差一定能被 m 整除。例如: 17与 除以 3的余数都是 2,所以17( )能被 3整除(用式子表示为:如果有 ab ( mod m ),那么一定有 abmk ,k 是整数,即m|(ab)余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被5除位数较多时,计算是很麻烦的建立余数判别法的基本思想是:为了

12、求出“N被 m 除的余数” ,我们希望找到一个较简单的数 R,使得:N 与 R 对于除数 m同余由于 R 是一个较简单的数,所以可以通过计算 R 被 m 除的余数来求得N 被 m 除的余数1) 整数 N 被 2 或 5 除的余数等于 N 的个位数被 2 或 5 除的余数;2) 整数 N 被 4 或 25 除的余数等于 N 的末两位数被 4 或 25 除的余数;3) 整数 N 被 8 或 125 除的余数等于 N 的末三位数被 8 或 125 除的余数;4) 整数 N 被 3 或 9 除的余数等于其各位数字之和被 3 或 9 除的余数;5) 整数 N 被 11 除的余数等于 N 的奇数位数之和与

13、偶数位数之和的差被 11除的余数;(不够减的话先适当 加 11 的倍数再减) ;6) 整数 N 被 7,11 或 13 除的余数等于先将整数 N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被 7,11 或 13 除的余数就是原数被 7,11 或 13 除的余数四、质数与合数(1)质数与合数定义一个数除了 1 和它本身,不再有别的约数,这个数叫做质数(也叫做素数) 。一个数除了 1 和它本身,还有别的约数,这个数叫做合数。要特别记住:1 不是质数,也不是合数。常用的 100 以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、

14、59、61、67、71、73、79、83、89、97,共计 25 个。(2)质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:把 30 分解质因数。解:30235。其中 2、3、5 叫做 30 的质因数。又如 12223223,2、3 都叫做 12 的质因数。(3)部分特殊数的分解; ; ; ;1710141270173; ; ;959832; .208257(4)判断一个数是否为质数的方法根据定义如果能够找到一个小于 p 的质数 q(均为整数),使得 q 能够整除 p,那么 p 就不是质数,所以我们只要拿

15、所有小于 p 的质数去除 p 就可以了;但是这样的计算量很大,对于不太大的 p,我们可以先找一个大于且接近 p 的平方数 ,再列出所有不大于 K 的质数,用这些质数2K去除 p,如没有能够除尽的那么 p 就为质数.例如:149 很接近 ,根据整除的性质 149 不能被142、3、5、7、11 整除,所以 149 是质数。6五、约数和倍数(1)求最大公约数的方法分解质因数法:先分解质因数,然后把相同的因数连乘起来例如: 2371, 2537,所以 (231,5)721;短除法:先找出所有共有的约数,然后相乘例如:83962,所以(12,8)36;辗转相除法:每一次都用除数和余数相除,能够整除的那

16、个余数,就是所求的最大公约数用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是 0 为止那么,最后一个除数就是所求的最大公约数(如果最后的除数是 1,那么原来的两个数是互质的)例如,求 600 和 1515 的最大公约数: 15602315 ; 6031528 ;3152830; 2859 ; 3 ;所以 1515 和 600 的最大公约数是 15(2) 最大公约数的性质几个数都除以它们的最大公约数,所得的几个商是互质数;几个数的

17、公约数,都是这几个数的最大公约数的约数;几个数都乘以一个自然数 n,所得的积的最大公约数等于这几个数的最大公约数乘以 n(3)求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数 b; a即为所求(4)求一个数约数的个数分解质因数,之后将不同质因数的次数均加 1,之后相乘。所得结果就是这个数不同约数的个数。如: 2537,则 的不同约数的个数为258)1(2)1((5)求最小公倍数的方法分解质因数的方法;例如: 2317, 2537,所以 231,53712;短除法求最小公倍数;例如:83962,所以 18,2326;,(,

18、)ab7(6)最小公倍数的性质两个数的任意公倍数都是它们最小公倍数的倍数两个互质的数的最小公倍数是这两个数的乘积两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数六、平方1、完全平方数特征(1)完全平方数的尾数只能是 0,1,4,5,6,9。不可能是 2,3,7,8。(2)在两个连续正整数的平方数之间不存在完全平方数。(3)完全平方数的约数个数是奇数,约数个数为奇数的自然数是完全平方数。(4)若质数 p 整除完全平方数 2a,则 p 能被 a整除。2、性质性质 1:完全平方数的末位数字只可能是 0,1,4,5,6,9性质 2:完全平方数被 3,4,5,8,16 除的余数

19、一定是完全平方数性质 3:自然数 N 为完全平方数 自然数 N 约数的个数为奇数因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果 p 是质数,n 是自然数,N 是完全平方数,且 21|np,则 2|np性质 4:完全平方数的个位是 6 它的十位是奇数性质 5:如果一个完全平方数的个位是 0,则它后面连续的 0 的个数一定是偶数如果一个完全平方数的个位是 5,则其十位一定是 2,且其百位一定是0,2,6 中的一个性质 6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数3、 一些重要的推论(1)任何偶数的平方一定能被 4 整除;任何奇数的平方被 4(或 8)除

20、余 1.即被 4 除余 2 或 3 的数一定不是完全平方数。(2)一个完全平方数被 3 除的余数是 0 或 1.即被 3 除余 2 的数一定不是完全平方数。(3)自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。(4)完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。(5)完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。(6)完全平方数的个位数字为 6 时,其十位数字必为奇数。(7)凡个位数字是 5 但末两位数字不是 25 的自然数不是完全平方数;末尾只有奇数

21、个“0”的自然数不是完全平方数;个位数字为 1,4,9 而十位数字为奇数的自然数不是完全平方数。4、 重点公式回顾:平方差公式: 2()abab七、进制1、 (1)十进制:8我们常用的进制为十进制,特点是“逢十进一” 。在实际生活中,除了十进制计数法外,还有其他的大于 1 的自然数进位制。比如二进制,八进制,十六进制等。(2)二进制:在计算机中,所采用的计数法是二进制,即“逢二进一” 。因此,二进制中只用两个数字 0 和 1。二进制的计数单位分别是 1、2 1、2 2、2 3、,二进制数也可以写做展开式的形式,例如 100110 在二进制中表示为:(100110)2=125+024+023+1

22、22+121+020。二进制的运算法则:“满二进一” 、 “借一当二” ,乘法口诀是:零零得零,一零得零,零一得零,一一得一。注意:对于任意自然数 n,我们有 n0=1。(3) k进制:一般地,对于 k 进位制,每个数是由 0,1,2, , 1k( ) 共 k 个数码组成,且“逢 k 进一 ” 1( ) 进位制计数单位是 k, , 2, 如二进位制的计数单位是 02, 1, 2, ,八进位制的计数单位是 8, 1, , (4) 进位制数可以写成不同计数单位的数之和的形式 110 0nnnkaakak ( )十进制表示形式: 101nN ;二进制表示形式: 022naa ;为了区别各进位制中的数

23、,在给出数的右下方写上 k,表示是 k进位制的数如: 8352( ) , 210( ) , 12345( ) ,分别表示八进位制,二进位制,十二进位制中的数(5) k进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。2、 进制间的转换:一般地,十进制整数化为 k进制数的方法是:除以 k取余数,一直除到被除数小于 k为止,余数由下到上按从左到右顺序排列即为 进制数反过来, k进制数化为十进制数的一般方法是:首先将 k进制数按 的次幂形式展开,然后按十进制数相加即可得结果如右图所示:9十进制 二进制十六进制八进制八、位值1、位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一个数字除了有自身的一个值外,还有一个“位置值” 。例如“2”, 写在个位上,就表示 2 个一,写在百位上,就表示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。2、 位值原理的表达形式:以六位数为例: a100000+b10000+c1000+d100+e10+f。bcdef3、 解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为 x,列方程解答

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初级教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报