1、22.1.3二次函数的图象,1二次函数y2x2的图象是_, (1)它的开口向_, (2)顶点坐标是_; (3)对称轴是_, (4)在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_, (5)当x_时, y有最_值,其最_值是_。,课前复习:,2、二次函数 y=2x 、 的图象与二次函数 y=x 的图象有什么相同和不同?,a0,a0,3、试说出函数yax2(a是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,0),(0,0),二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?它们有什么关系?,画出函数y2
2、x2和函数y 2x2+1的图象,并加以比较,(1)二次函数 y=2x1 的图象与二次函数 y=2x 的图象有什么关系?,(0,1),(0,1),问题:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?,1、函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。,2、函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y 2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。,函数y2x21和y2x2的图象有什么联系?,你能由函数y2x2的性质,得到函数y2x21的一些性
3、质吗?完成填空:当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_以上就是函数y2x21的性质。,0,0,=0,小,小,1,例2. 在同一直角坐标系中,画出二次函数y=2x2+1和y=2x21的图像,解: 列表,描点,连线,y=2x2+1,y=2x21,y=2x2,例2. 在同一直角坐标系中,画出二次函数y=2x2+1和y=2x21的图像,二次函数的图像,(1) 抛物线y=2x2+1,y=2x21的开口方向、对称轴、顶点各是什么? (2)抛物线y=2x2+1,y=2x21与抛物线y=2x2有什么关系?,思考,(1)抛物线y=2x2+1:
4、,开口向上,顶点为(0,1).,对称轴是y轴,抛物线y=2x21:,开口向上,顶点为(0, 1).,对称轴是y轴,(2)抛物线y=2x2+1,y=2x21与抛物线y=2x2的异同点:,y=2x2+1,抛物线y=2x2,抛物线 y=2x21,向上平移 1个单位,抛物线y=2x2,向下平移 1个单位,y=2x21,y=2x2,抛物线 y=2x2+1,相同点:,形状大小相同,开口方向相同,对称轴相同,不同点:,顶点的位置不同,抛物线的位置也不同,y = x2,不用描点法,你知道 y = x21、 y = x21 的图象是怎样的吗?,y = x2 1,y = x2 1,例如:,二次函数上下平移 的口决
5、,上加下减,y = x2,y = x2 1,y = x2 1,向上平移1个单位,向下平移1个单位,(2)二次函数 y=3x1 的图象与二次函数 y=3x 的图象有什么关系?,(0,-1),a0,(3)在同一直角坐标系中画出函数的图像,y,在同一直角坐标系中画出函数的图像,a0,(0,2),(0,-2),试说出函数yax2k(a、k是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,k),(0,k),|a|越大开口越小,反之开口越大。,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2 +c(a0),y=ax2 +c(a0),(0,c),(
6、0,c),y轴,y轴,当c0时,在x轴的上方(经过一,二象限); 当c0时,与x轴相交(经过一,二三四象限).,当c0时,与x轴相交(经过一,二三四象限).,向上,向下,当x=0时,最小值为c.,当x=0时,最大值为c.,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,y = ax2 + c,练习 1.把抛物线 向下平移2个单位,可以得到抛物线 ,再向上平移5个单位,可以得到抛物线 ; 2.对于函数y= x2+1,当x 时,函数值y随x的增大而增大;当x 时,函数值y随x的增大而
7、减小;当x 时,函数取得最 值,为 1 。,0,0,=0,大,3.函数y=3x2+5与y=3x2的图象的不同之处是( ) A.对称轴 B.开口方向 C.顶点 D.形状 4.已知抛物线y=2x21上有两点(x1,y1 ) ,(x2,y2 )且x1x20,则y1 y2(填“”或“”)5.已知抛物线 ,把它向下平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若ABC是直角三角形,那么原抛物线应向下平移几个单位?,C,归纳与小结,二次函数y = ax2+k的性质:,(1)开口方向:,当a0时,开口向上; 当a0时,开口向下;,(2)对称轴:,y轴,(3)顶点坐标:,顶点坐标是(0,k),(4)
8、函数的增减性:,当a0时,,对称轴左侧y随x增大而减小, 对称轴右侧y随x增大而增大;,当a0时,,对称轴左侧y随x增大而增大, 对称轴右侧y随x增大而减小。,(1)函数y=4x2+5的图象可由y=4x2的图象向 平移 个单位得到;y=4x2-11的图象 可由 y=4x2的图象向 平移 个单位得到。,(2)将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;将y=2x2-7的图象向 平移 个 单位得到可由 y=2x2的图象。将y=x2-7的图象向 平移 个单位可得到 y=x2+2的图象。,上,5,下,11,下,4,上,7,上,9,小试牛刀,(3)抛物线y=-3x2+5的开口 ,
9、对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 。,(4)抛物线y=7x2-3的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 。,下,y轴,(0,5),减小,增大,0,大,5,上,y轴,(0,-3),减小,增大,0,小,-3,小试牛刀,5、在同一直角坐标系中,一次函数y=ax+c和 二次函数y=ax2+c的图象大致是如图中的( ),B,6 函数y=ax2-a与y=,在同一直角坐标系中的图象可能是 ( ),A,7.抛物线
10、y=ax2c与y=x2的形状相同,且其顶点坐标是(,),则其表达式为_,,y=x2,或y=x2,8、按下列要求求出二次函数的解析式: (1)已知抛物线y=ax2+c经过点(-3,2)(0,-1) 求该抛物线线的解析式。,(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。,(3)对称轴是y轴,顶点纵坐标是-3,且经过 (1,2)的点的解析式,,(4)抛物线y=ax2c对称轴是y轴,顶点(0,-3), 且经过(1,2),求抛物线的解析式.,9已知二次函数y=3x2+4,点A(x1,y1), B(x2,y2), C(x3,y3), D(x4,y4)在其图象上,且x2|x1|, |x3|x4|, 则 ( ),x1,x2,x3,x4,y1,y4,y3,y2,A.y1y2y3y4,B.y2y1y3y4,C.y3y2y4y1,D.y4y2y3y1,B,10 已知二次函数y=ax2+c ,当x取x1,x2(x1x2, x1,x2分别是A,B两点的横坐标)时,函数值相等, 则当x取x1+x2时,函数值为 ( )A. a+c B. a-c C. c D. c,D,