1、第十一章三角形测试卷班级 姓名 总分 1.填空题(每空 1 分,共 27 分)1.在ABC 中, AB+BC AC,判断依据是 。2.三角形的两边长分别是 2、5,则第三边长 a 的取值范围是 ,如果该三角形是个等腰三角形,则第三边边长为 。3.如图在ABC 中,BC=4cm, 。若 AD 是ABC 的中线,24cmSABC则 BD= , ;若 AD 是ABC 的高线,则 ,ABDS ADCAD= ;若 AD 是ABC 的角平分线,则 。B_4.在ABC 中, ,则6:12:,_,按角分类该三角形一定是_。5.n 边形的内角和为 ,外角和为 。对角线有 条。若某 n 边形的内角和为,则该多边形
2、为 ,其外角和为 ,对角线共有 条。1086.如图,1,2,3,4 是五边形 ABCDE 的 4 个外角,若A=140,则1+2+3+4= 。7.如图,在四边形 ABCD 中,A=50.直线 l 与边 AB,AD 分别相交于点 M,N,则1+2= 。8.如图,在ABC 中,A=40,B=60,则外角ACD= 度, 9.如图,图中共有 个三角形,其中以 EC 为边的三角形是 和 ,BEC 是 和 的内角。 (6 题) (7 题) (8 题) (9 题)2.选择题(每小题 3 分,共 30 分)1.下列长度的各边不能组成三角形的是( )A.5cm、12cm、8cm B.6cm、8cm、11cm C
3、.3cm、5cm 、8cm D.6.3cm、6cm、12cm2.等腰三角形的两 边长分别为 4cm 和cm,则它的周长可能是( )A15cm B.18 cm C. 19 cm D.15cm 或 18cm3.下面四个图形中,线段 BE 是ABC 的高的是( ).4.一扇窗户打开后,用窗钩可将其固定,所运用的几何原理是( ).A.三角形的稳定性 B.两点之间线段最短 C.两点确定一条直线 D.垂线段最短5.能够把一个三角形分成两个面积相等的三角形的是( )A.高线 B. 中位线 C. 中线 D.角平线6.一个正十边形的某一边长为 8 cm,其中一个内角的度数为 144,则这个正十边形的周长与内角和
4、分别为( ).A.64cm,1440 B.80cm,1440 C.80cm,1640 D.88cm,16207.下列图形不是凸多边形的是( ).8.下列说法正确的有( )三角形的高线可能在内部、外部、边上等边三角形是正多边形三角形的高线、角平分线、中线都是线段三角形可能有两个钝角。A.1 个 B.2 个 C.3 个 D.4 个9.如图,若1=32,3=45,则2 等于( ).A.32 B.45C.64 D.77(9 题) (10 题)10.如图,四边形的三个外角分别为 1108530,则 是( ).A.30 B.45 C.70 D.85三.简答题(共 43 分)1.(6 分).如图,ABCD,
5、AE 交 CD 于点 C,DEAE,垂足为 E,A=37,求D 的度数。2.(6 分)如图所示,BCED 于 O,A=30,D=40,求B 和ACB 的度数.3.(7 分)如图所示,CD 是ABC 的角平分线,E 是 BC 边上的一点,且1 = 2。试判断 DE 与 AC的位置关系并说明理由。4.(7 分)如图,在ABC 中,B = 50,C = 70,AD 是高,AE 是角平分线,求EAD 的度数。5.(7 分)如图,AD 是ABC 的外角平分线,交 BC 的延长线于 D 点,若B = 30,DAE = 55,求ACD 的度数。6.(10 分)如图,ABC 中,OB,OC 分别平分ABC 和ACB,求证: 9021ACOBA E C 1 2 B D AB CDEA E C B D