收藏 分享(赏)

新人教版初中数学九年级上册精品教案 全册.doc

上传人:weiwoduzun 文档编号:3208103 上传时间:2018-10-07 格式:DOC 页数:232 大小:6.06MB
下载 相关 举报
新人教版初中数学九年级上册精品教案 全册.doc_第1页
第1页 / 共232页
新人教版初中数学九年级上册精品教案 全册.doc_第2页
第2页 / 共232页
新人教版初中数学九年级上册精品教案 全册.doc_第3页
第3页 / 共232页
新人教版初中数学九年级上册精品教案 全册.doc_第4页
第4页 / 共232页
新人教版初中数学九年级上册精品教案 全册.doc_第5页
第5页 / 共232页
点击查看更多>>
资源描述

1、新人教版初中数学九年级上册精品教案 全册数学教案九年级 上册教 学 时 间 课 题 21.1 二次根式 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1. 理解二次根式的定义,会用算术平方根的概念解释二次根式的意义.2. 会确定二次根式有意义的条件,知道 ( 0) 是非负数,并会运用 .a3. 会进行二次根式的平方运算,会对被开方数为平方数的二次根式进行化简.过 程方 法1. 经历观察、比较、概括二次根式的定义.2. 通过探究二次根式的条件和结果,达成知识目标 2.3. 通过探究 和 所含运算、运算顺序、运算结果分析,归纳并掌握性质.2a教学目标 情 感态 度 培养学生观察、猜想、探究、

2、归纳的习惯和能力,体验数学发现的乐趣.教 学 重 点 1. 有意义的条件. 2. 0 时 0 的应用. 3. 和 的运算、化简a2a教 学 难 点 0 时,a表示什么?可不可能为负数? ( 0)是什么样的aa数呢?例 1、当 x 是怎样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下,其运算结果是怎样的实数?, , 232x练习:1、课本思考 2:当 x 是怎样的实数时, ,2x有意义?3x1、若 ,则 x 和 m 的取值范围是x_;m_.2、已知 ,求 的值各是多少?05yy,(二)两个运算性质活动 5、完成课本探究 1活动 6、对 中的运算顺序、运算结果进行分析,归纳2a出:一个

3、非负数先开方再平方,结果不变.练习:课本例 2活动 7、完成课本探究 2活动 8、对 中的运算顺序、运算结果进行分析,归纳2a出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例 3补充练习:1、化简: , ;2)4(2)3(2、直角三角形的三边分别为 a,b,c,其中 c 为斜边,则式子 - 与式子 有什么关系?2ac2三、课堂训练完成课本中两个练习.有时间可补充:1、 成立的条件是_.m12、 成立的条件是_.m四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象” ,开方为“子对象”.3

4、、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计讨论,然后教师订正,最后师生共同归纳得出性质 1:( 0)是一个非a负数师生共同分析归纳出使二次根式有意义的条件:不是使字母为非负数,而是使被开方数为非负数,且还要考虑二次根式的位置.要求学生会用算术平方根的意义解释.2师生共同归纳得出性质 2:( 0)a仍要求用算术平方根的意义解释 .2师生共同归纳出性质3:( 0)a2找学生板演,说明解题过程引导学生先观察、分析,解题后养成说明理由的反思习惯.教师巡视指导,收集学生掌握情况,并集中订正.教师归纳总结,学生边听边作笔记.通过例题分析和练习加深对二次根式“运算结果和被开

5、方数双非负”的理解.先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可加深对性质的理解.对运算顺序的分析在于弄清两种运算的区别,从而弄清对字母 a的要求不同,计算结果也因 a 而异.补充练习在于强化二次根式的结果具有非负性,也促使学生养成解题先观察的习惯。进一步体会“两个非负”.这里只要求学生知道“什么是代数式”即可,不要求掌握“什么叫代数式”.必做:P5:1、2、3、4、5、6选做:P6:7、8教 学 反 思教 学 时 间 课 题 21.2 二次根式的乘除(第 1 课时) 课 型 新 授教 学 媒 体 多 媒 体教学目标知 识技 能1.会运用二次根式乘法法则进行二次根式

6、的乘法运算.2.会利用积的算术平方根性质化简二次根式.过 程方 法1.经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质.2.通过例题分析和学生练习,达成目标 1,2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的方法.情 感态 度 培养学生观察、猜想的习惯和能力,勇于探索知识之间内在联系.教 学 重 点 双向运用 ( 0,b0) 进行二次根式乘法运算 . a教 学 难 点 被开方数的最优分解因数或因式的方法.教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引

7、入导语设计:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算。二、探究新知(一)二次根式乘法法则活动 1、1.填空,完成课本探究 12.用 1 中所发现的规律比较大小 ; 364436236活动 2、给出二次根式的乘法法则活动 3、思考下列问题: 公式中为什么要加 0, b0?a 两个二次根式相乘其实就是 不变, 相乘 ( 0, b0,c0)= a练习:课本例 1,在(1)(2)之后补充 (3) a4归纳:运算的第一步是应用二次根式乘法法则,最终结果尽量简化.(二)积的算术平方根性质活动 4.将二次根式乘法公式逆用得到积的算术平方根性质完成课本例 2,在(1

8、)(2)之间补充 48归纳:化简二次根式实质就是先将被开方数因数分解或因式分解,然后再将能开的尽方的因数或因式开方后移到根号外.例 3. 计算:(1) (2) ;(3)74105xy31分析:(1)第一步被开方数相乘,不必急于得出结果,而是先观察因式或因数的特点,再确定是否需要利用乘法点题,板书课题.学生计算,观察对比,找规律结合探究内容师生总结教师组织学生小组交流,进行讨论.学生板演利用它就可以将二次根式化简教师归纳总结,学生边听边作笔记.找学生说明解题过程,引导学生先观察、分析,解题后养成说明理由的反思习惯.指导学生交流,教师总结让学生经历从特殊到一般的认知过程,培养数感.使学生理解二次根

9、式乘法的前提是二次根式有意义.乘法法则推广使学生初步掌握如何计算二次根式乘法.使学生学会化简二次根式双向使用公式,熟练进行计算形成运用技巧,便于解题速度与正确率的深化理解公式及运用,提高解题交换律和结合律以及乘方知识将被开方数的积变形为最大平方数或式与剩余部分的积,最后将最大平方数或式开方后移到根号外.(2)运用乘法交换律和结合律将不含根号的数或式与含根号的数或 式分别相乘,再把这两个积相乘.,之后同(1).三、课堂训练完成课本练习.补充:1. 成立,求 x 的取值范围.12xx2.化简: 03y四、小结归纳1.二次根式乘法公式的双向运用;2.进行二次根式乘法运算的一般步骤,观察式子特点灵活选

10、取最优解法.五、作业设计必做:P12:1、3(1) (2) 、4补充作业:1计算:(1) ; (2) ;57731(3) ; (4) .18422.化简:(1) ; (2) .327yxab13.等边三角形的边长是 3,求这个等边三角形的面积学生独立练习,巩固新知组织学生交流,讨论,达成共识.师生共同归纳能力.纳入知识系统教 学 反 思教 学 时 间 课 题 21.2 二次根式的乘除(第 2 课时) 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.会运用二次根式除法法则进行二次根式的除法运算.2.会利用商的算术平方根性质化简二次根式.3.理解最简二次根式概念,知道二次根式的运算中,一般

11、要把最后结果化为最简二次根式.过 程方 法1.经历观察、比较、习,达成目标 1,2,认识到除法法则只是进行除法运算的第一步,之后如果需要化简,进行化简.也可运用概括二次根式除法公式,通过公式的双向性得到商的算术平方根性质.2.通过例题分析和学生练习分母有理化方法进行二次根式除法.教学目标 情 感态 度 类比二次根式的乘法进行知识与方法的迁移,获得新知,体验探索的乐趣.教 学 重 点 双向运用 进行二次根式除法运算.0,bab教 学 难 点 能使用分母有理化方法进行二次根式的除法运算教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语设计:上节

12、课学习了二次根式的乘法,这节课学习二次根式的除法运算.二、探究新知(一)二次根式除法法则活动 1、1.填空,完成课本探究 12.用 1 中所发现的规律比较大小; 8252活动 2、给出二次根式的除法法则活动 3、思考下列问题:公式中为什么要加 0, b0?a两个二次根式相除其实就是 不变, 相除练习:课本例 4,在(1)(2)之后补充 (3) a34归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化.(二)商的算术平方根性质活动 4.将二次根式除法公式逆用得到商的算术平方根性质完成课本例 5归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再

13、利用积的算术平方根分别化简.例 6. 计算:点题,板书课题.学生计算,观察对比,类比上节课知识找规律结合探究内容师生总结教师组织学生小组交流,进行讨论.学生板演,师生订正学生板演并讲解解题过程及依据找学生说明解题过程,引导学生先观察、分析,解题后养成说明理由的反思习惯.让学生经历从特殊到一般的认知过程,培养数感.使学生理解二次根式除法的前提是二次根式有意义.使学生初步学会化简被开方式含有分数线的二次根式双向使用公式,熟练灵活进行计算(1) (2) ;(3)537a28分析:第一步可以把被开方数相除,然后告诉学生被开方数中不能含有分母,数必须是整数,利用分数的基本性质将分母变成完全平方数,开方后

14、移到根号外;也可以直接模仿分数的基本性质和公式 ,a2)(,以去掉分母中的根号.0,bab(三)最简二次根式概念活动 5、让学生观察所做习题结果,总结归纳结果的特点,得到最简二次根式的概念.分析概念:1.被开方数不含分母的含义指-因数是整数,因式是整式;2.被开方数中不能含开得尽方的因数是指-被开方数不能分解出完全平方数;被开方数中不含开得尽方的因式是指-被开方数的每一个因式的指数都小于根指数 2,因此,每一个因式的指数都是 1.完成课本例 7补充:化简 242yx注意:被开方数是和式时,结果不等于各加数的算术平方根的和.三、课堂训练完成课本练习.补充:1. 成立,求 x 的取值范围.1x2.

15、找出下列根式中的最简二次根式38262y1.03.判断下列等式是否成立491659221四、小结归纳1.二次根式除法公式的双向运用;2.进行二次根式除法运算的一般步骤,观察式子特点灵活选取最优解法.3.最简二次根式概念五、作业设计必做:P12:2、3(3) (4) 、5、6、7选做:P12: 8、9、10指导学生交流,教师总结学生观察刚做过的题的结果,含根式的结果中根式的特点.教师及时肯定学生的结论并加以引导和整理汇总.学生说解题方法,书写解题过程体会化简二次根式再实际问题中的应用学生独立完成巩固新知学生思考,讨论,阐述个人见解让学生观察,寻找并解释,能将不是的进行化简让学生观察,判断,将不成

16、立的正确求解师生共同归纳形成运用技巧,以提高解题速度与正确率让学生通过结果的最终性初步感知最简二次根式的概念,继而理解概念,并为以后的计算和化简的结果设立标准强调被开方数是和式的二次根式的化简办法熟练计算和解题深化理解公式及运用使学生能判断最简二次根式正确化简二次根式纳入知识系统教 学 反 思教 学 时 间 课 题 21.2 二次根式的加减(第 1 课时) 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.知 道 在 有 理 数 范 围 内 成 立 的 运 算 律 在 实 数 范 围 内 仍 然 成 立 .2.能 熟 练 将 二 次 根 式 化 简 成 最 简 二 次 根 式 .3.会

17、运 用 二 次 根 式 加减法 法 则 进 行 二 次 根 式 的 加减运 算 .过 程方 法1.类比整式加减得到二次根式加减的方法,二者都是系数的加减运算.2.在学习过程中体会有理数、整式、二次根式运算之间的联系,感受数的扩充过程中运算性质和运算律的一致性以及数式通性.教学目标 情 感态 度 学生温故知新,渗透类比思想,培养自主学习意识.教 学 重 点 二次根式加减法运算方法教 学 难 点 二次根式的化简,合并被开方数相同的最简二次根式教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语设计:上节课学习了二次根式的乘除法,这节课学习二次根式

18、的加减法运算.二、探究新知(一)二次根式加减法法则活动 1、类比计算,说明理由 2 +3 ; .a23 2 -3 ; . ; 1318 4 5思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么?点题,板书课题.学生计算,观察对比,类比整式加减知识尝试计算教师组织学生小组交流,进行讨论.让学生尝试经历从已知到未知的迁移,感受数式通性.为总结二次根式的加减法法则做铺垫(3) 什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?活动 2、给出二次根式的加减法法则分析法则:二次根式加减时,先将非最简二次根式

19、化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.练习: 课本例 1,之后补充 (3) (4) 1 18282课本例 2,之后补充 2 6分析说明: 中补充(3)结果为负,(4)含分数线,作为例 11,例 2 的过渡。 中补充括号前是负号的. 2(二)二次根式加减的应用1.课本引例分析:这个实际问题的解决方法可能不同,还可以先估算两个正方形的边长,再把它们的和与木板的长比较.2.课本例 3分析:利用勾股定理解决实际问题,运用二次根式的加减进行计算,计算的最后一步取近似值,使结果更精确.三、课堂训练完成课本练习.补充:1

20、.下列各组二次根式中,化简后被开方式相同的是()A. B. 2ab与 22nm与C. D.nm1与 984343ba与2.二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳1.进行二次根式加减运算的一般步骤.2.二次根式的熟练化简.2.二次根式加减的实际应用.五、作业设计必做:P17:1、2、3选做:5补充作业:计算:(1) ;(2) ;3271(3) ;(4) ;98x(5) ;(6) ;32xa38(7) ;10954结合探究内容师生总结学生板演,并说明每一步的依据,然后师生订正.让学生认真审题,分析,并阐述,然后师生交流,学生进行计算.学生独立完成练习,巩固新知,

21、师生订正引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.指导学生交流,教师总结更好地理解和运用法则初步进行计算,并强化去括号后的符号变化感受二次根式加减的实际应用熟练计算和解题正确化简二次根式纳入知识系统教 学 时 间 课 题 21.2 二次根式的加减(第 2 课时) 课 型 新 授教 学 媒 体 多 媒 体知 识技 能在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算过 程方 法1.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算的顺序及运算律在计算过程

22、中的作用并感受数的扩充过程中运算性质和运算律的一致性以及数式通性.2. 在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整式的运算的联系.教学目标 情 感态 度 培养学生的类比运用意识教 学 重 点 混合运算的法则,运算律的合理使用教 学 难 点 灵活运用运算律、乘法公式等技巧,使计算简便教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语设计:到目前为止,我们已经学习了二次根式的乘除、加减运算,这节课来学习二次根式的混合运算.二、探究新知(一)二次根式混合运算法则活动 1、类比计算,说明理由(2 +3b) ; ( ) 1

23、a326(2 +3b)( -b); 236(3 b-4 2 ) ; 3 a点题,板书课题.学生计算,观察对比,类比整式混合运算知识尝试计算让学生尝试经历从已知到未知的迁移,感受式数通性.为总结二次根式的混合运算法则做铺(8) )27(43)2(1教 学 反 思思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的混合运算与整式的混合运算相同之处是什么?(3)左边式子中的字母 、b 可以表示二次根式吗?a(4)模仿整式的混合运算怎样进行二次根式的混合运算?活动 2、给出二次根式的混合运算的一般步骤.分析法则:(1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘

24、方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号).(2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。(3)有括号的二次根式混合运算,去掉括号是最关键的一步.练习: 课本例 4,之后补充 (3) 1 27)6418(课本例 5,之后补充 2 25分析说明: 中补充(3)是不能除尽(含分数线)的类型。 1中补充完全平方公式应用. 2归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算.(二)二次根式混合运算的应用1.若 x= ,则 x2+x+1= 12.已知 ,3y求 ; 的值.2

25、6y3.如图,四边形 ABCD 中,ABBC,ADAB,AB=1,BC=CD=2,求四边形 ABCD 的面 积. 三、课堂训练完成课本练习.补充:1.海伦秦九韶公式:如果一个三角形的三边长分别是 ,ab,c,设 = , 则三角形的面积为 S=p2cba公式运用:在 中,BC=4,AC=5,AB=6,求 的面积。ABCABC四、小结归纳1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算教师组织学生小组交流,进行讨论.结合探究内容师生总结学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生

26、独立完成练习,巩固新知,师生订正指导学生交流,教师总结垫更好地理解和运用法则初步进行计算感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 时 间 课 题 第 21 章小结 课 型 复 习教 学 媒 体 多 媒 体知 识技 能1. 学生构建知识体系2. 通过解决典型的题目,抓住本章要点;解决易出错的题目,找出错陷阱和错因.3. 联系实数,整式,勾股定理等相关知识进行综合运用.过 程方 法1. 从知识生成的本质和思想方法的本质养成学习数学的能力.2. 经历观察、思考、交流,熟练、灵活解题.教学目标 情 感态 度 培养数感和符号感,培养以联系和发展的观点学习数学的习惯教 学 重 点 深化理

27、解二次根式的概念和性质,熟练进行二次根式的化简与运算教 学 难 点 进一步理解二次根式的性质和运算法则的合理性教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语设计:我们已经学习了二次根式的概念,性质和运算,这节课来复习并总结本章知识.二、复习提升(一)基础巩固 解答下列各题,注意易让你犯错的陷阱1.若 有意义,则 x 的取值范围是 .x542.下列各式是最简二次根式的是( )点题,板书课题.学生计算,观察对比,运用本章知识独立计算检验学生基本知识的掌握情况,搜集反馈信息法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计

28、必做: P18:4、6、7选做: P18:8、91.已知 ,求23.5的近似值.42.如图 21.3-3 在平行四边形 ABCD 中,得 DEAB,E 点在 AB 上,DE=AE=EB= ,求平行四边形 ABCD 的周长.a教 学 反 思ED CBAA. B. C. D .a82ab3a3.下列二次根式中,和 是同类二次根式的是( )3A. B. C. D. 1507244.下列运算正确的是( )A. B. C. D.4285.计算: ; 1 )2( 2 19; 35 4 353归纳:本组训练题目典型,易错,旨在进一步理解二次根式相关知识,熟练进行二次根式化简与运算. 解答下列各题,注意避免犯

29、上组题中的错误,看是否有新的发现.1.若 有意义,则 x 的取值范围是 .x542.下列各式中不是最简二次根式的是( )A. B. C. D .7.03153.下列二次根式中,和 不是同类二次根式的是( )2A. B. C. D. 81894.下列计算正确的是( )A. B.2C. D.3135.计算: ; 1 6)124( 2 1273; 3 46)2(归纳:此组题与上组题考察内容相同,但问法不同,更具技巧性.(二)综合运用1.当 m 时, 有意义.542.能使 成立的 x 的取值范围是 .3x3.若 ,则 的取值范围是 .12a4.若 是 .的 值, 则 mbab,025.当 -3 时,化

30、简 的结果是 .2316.整数 满足下列两个条件: 式子 和 都有意x 1 xx0义 的值是整数,则 的值是 . 2 x7.以下结论正确的是 .(填序号即可)= 对一切实数 都成立 对一切实数 都 1aa 2 aa成立式子 叫做二次根式 一个数的平方根和它的绝对值都 3 4是非负数8. 在实数范围内分解因式: 的结果是 .59x9. 的计算结果是 .223)(10.已知 求 的值.,1yx2y11.如图,有一艘船在点 O 处测得一小岛上的电视塔 A 在北偏西600 的方向上,前进 20 海 里到达 B 处,测得 A 在船的西北方向,问再向西航行多少海里,船离电视塔最近? 教师组织学生小组交流,

31、最后明确答案结合题目内容让学生说明各题所考查知识点,指出易错之处,错因以及解题技巧学生独立完成,教师巡回视察.做完之后,师生订正.并让学生谈做题体会,以及新的发现.师生总结引导学生先观察、分析,小组讨论,再找学生说明解题思路,解题后养成说明理由的反思习惯.学生解题后, 师生订正指导学生交流,谈收获,体会,师生总结为下一组题中更好地理解和运用基本知识做准备学生进一步运用基本知识解决问题,达到熟练程度,为下组的综合训练奠定基础增加问题难度,综合性,使学生进一步理解知识,培养综合分析能力.总结二次根式、绝对值、平方的共同特点是非负补充分母有理化因式和分母有理化化简方法,拓宽知识,为后续学习打好准备

32、归纳:这组题是本章知识的深化运用,有一定的难度,与实数,有理式,勾股定理等知识综合运用. (三)构建知识体系二次根式概念 性质 运算乘除运算 加减运算 混合运算甲三、小结归纳1.复习巩固二次根式知识,及于其他相关知识的联系.2.进一步理解本章知识,熟练解决相关问题.3.补充课本未明确给出的概念及相关题目,拓展知识与能力.4.构建知识体系,纳入知识系统.四、作业设计必做: P22:1-8选做: P22:9-11让学生构建本章知识体系,教师展示学生的结构图,学生之间进行交流,肯定最优建构让学生阐述本节课有哪些收获,有何体会,教师指导从考查知识,易错题目,典型题,解题技巧,思想方法等方面总结使学生系

33、统感知本章知识,掌握各知识之间的内在联系纳入知识系统教 学 反 思第二十二章 一元二次方程 教案第 18 页 教 学 时 间 课 题 22.1 一元二次方程 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过 程方 法1通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二

34、次方程的根的概念,教学目标 情 感态 度 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情教 学 重 点 一元二次方程的概念,一般形式和一元二次方程的根的概念教 学 难 点通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一

35、元二次方程的有关概念.二、探究新知 探究课本问题 2分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请 x 个队参赛,如何用含 x 的代数式表示全部比赛场数?整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0; ; ; ;042x04y03572x61x 概念归纳:1.一元二次方程定义:分析:首先它是整式方程,然后未知数的个数是 1,最高次数是 2.2.一元二次方程的一般形式:分析:.为什么规定 0? 1 a.方程左边各项之间的运算关系是什么?关于 x 的一元二次方程 2的各项分别是什么?

36、各项系数是什么?0cbx3.特殊形式: ; ;202acx 课本例题分析:类比一元一次方程的去括号,移项,合并同类项,进行同解点题,板书课题.学生读题找等量关系列方程.学生观察所列方程整理后的特点,把握方程结构,初步感知一元二次方程概念.学生尝试叙述,然后师生归纳师生分析概念和一般形式.学生根据相关概念作答,复习巩固.学生类比一元一次方程的解联系曾经学习过的方程知识衔接本章,明确本节课内容淡化列方程难度,重点突出方程特点 通过比较,对一元二次方程的概念达到共识,从而为掌握概念作准备.全面理解和掌握识记、理解相关概念第二十二章 一元二次方程 教案第 19 页 变形,化为一般形式后再写出各项系数,

37、注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. 一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程 x2+5x+6=0 的根?-4,-3,-2,-1 ,0,1,2,3,43.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4) 012x4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程 的根是 8 和-7,但是答案56只能有一个,应该是哪个?归纳:一元二次方程的根的情况 1一元二次方程的解要满足实际问题 2三、课堂训练1.课本练习2 补充:

38、1).在下列方程中,一元二次方程的个数是( ) 3x 2+7=0 ax 2+bx+c=0 (x-2) (x+5)=x 2-1 3x 2-=05xA1 个 B2 个 C3 个 D4 个2).关于 x 的方程(a-1)x 2+3x=0 是一元二次方程,则 a 范围_3).已知方程 5x2+mx-6=0 的一个根是 x=3,则 m 的值为_4).关于 x 的方程(2m 2+m)x m+1+3x=6 可能是一元二次方程吗?四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根.五、作业设

39、计必做:P28:1-7选做:.P29:8、9尝试叙述学生思考,讨论完成,学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.通过类比,迁移提高加深对概念理解和运用,同时对一元二次方程的根的情况初步感知使学生巩固提高,了解学生掌握情况纳入知识系统教 学 反 思第二十二章 一元二次方程 教案第 20 页 第二十二章 一元二次方程 教案第 21 页 教 学 时 间 课 题 22.2.1 配方法(1) 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.理解一元二次方程“降次”的转化思想2.根据平方根的意义解形如 x2=p(p0)的一元二次方程,然后迁移到解(mx+n

40、)2=p(p0)型的一元二次方程3.把一般形式的一元二次方程(二次项系数是 1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.过 程方 法1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,对比获得一元二次方程的解法-直接开平方法,配方法教学目标 情 感态 度 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情教 学 重 点1.运用开平方法解形如(mx+n) 2=p(p0)的方程;领会降次转化的数学思想2 用配方法解二次项是 1,一次项系数是偶数的一元二次方程教 学 难 点 降次思想,配方法教 学 过 程

41、 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知 探究课本问题 1分析:1.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如 x2=p(p0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解. 解决课本思考1 如何理解降次?2 本题中的一元二次方程是通过什么方法降次的?3 能化为(x+m) 2=n(n0)的形式的方程需要具备什么特点?归纳:1 运

42、用平方根知识将形如 x2=p(p0)或(mx+n) 2=p(p0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2 左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m) 2=n(n0). 探究课本问题 21.根据题意列方程并整理成一般形式.2.将方程 x2+6x-16=0 和 x2+6x+9=2 对比,怎样将方程 x2+6x-16=0 化为像 x2+6x+9=2 一样,左边是含有未知数的完全平方式,右边是非负常数的方程?完成填空: x 2+6x+ =(x+ ) 2 1方程移项之后,两边应加什么数,可将左边配成完全平方式? 2 归纳:点题,板书课题.学生读

43、题找等量关系列方程,思考解方程的依据.学生观察所列方程特点,辨析方程的解与问题的答案.学生尝试描述何为降次及方法,把握方程结构特点,初步体会直接开平方法解一元二次方程.教师组织学生讨论,尝试回答,教师及时肯定并总结学生审读并列方程组织学生讨论,交流然后师生总结开门见山明确本节课内容淡化列方程难度,重点突出解方程方法,关注方程的 解,以及方程的解要受到实际问题的检验,作出取舍.理解降次,初步感知方程结构特点,更好把握直接开平方法,并为配方法的学习作铺垫感知一元二次方程的实际应用在比较中发现配方法的实质第二十二章 一元二次方程 教案第 22 页 用配方法解二次项系数是 1 且一次项系数是偶数的一元

44、二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n0)的形式.三、课堂训练课本练习:P31 页练习,P34 页练习 1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n) 2=p(p0)的一元二次方程.2.用配方法解二次项系数是 1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作

45、业设计必做:P42:1、2、3(1) (2)选做:下面补充作业补充作业:1若 8x2-16=0,则 x 的值是_2如果方程 2(x-3) 2=72,那么,这个一元二次方程的两根是_3若 x2-4x+p=( x+q) 2,那么 p、q 的值分别是( ) Ap=4,q=2 Bp=4 ,q=-2 Cp=-4 ,q=2 Dp=-4,q=-24方程 3x2+9=0 的根为( ) A3 B-3 C3 D无实数根5.已知 x2-8x+15=0,左边化成含有 x 的完全平方形式,其中正确的是( ) Ax 2-8x+(-4) 2=31 Bx 2-8x+(-4) 2=1Cx 2+8x+42=1 Dx 2-4x+4

46、=-116某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长 25m) ,另三边用木栏围成,木栏长 40m(1)鸡场的面积能达到 180m2 吗?能达到 200m 吗?(2)鸡场的面积能达到 210m2 吗?学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.总结成文,为熟练运用作准备使学生巩固提高纳入知识系统教 学 反 思第二十二章 一元二次方程 教案第 23 页 第二十二章 一元二次方程 教案第 24 页 教 学 时 间 课 题 22.2.1 配方法(2) 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.进一步理解配方法和配方的目的.2.掌握运用配方法

47、解一元二次方程的步骤3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.过 程方 法通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.教学目标情 感态 度1. 通过对配方法的探究活动,培养学生勇于探索的学习精神2. 感受数学的严谨性和数学结论的确定性.3. 温故知新,培养学生利用旧知解决问题的能力.教 学 重 点 用配方法解一元二次方程教 学 难 点用配方法解二次项系数不是 1 的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是 1 的类型.教 学 过 程 设 计教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图一、复习引入导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p(p0)或(mx+n) 2=p(p0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程.二、探究新知1.填空: 1 22_8xx 2 2_x 3 4 4 92.填空: = 1 a是 完 全 平 方 式 ,2 2 m是 完 全 平 方 式 ,93.解下列方程: x2-8x+7=0 2x2+8x-2=0

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报