收藏 分享(赏)

直线、平面平行的判定及其性质-测试题(答案详解).pdf

上传人:weiwoduzun 文档编号:3155625 上传时间:2018-10-05 格式:PDF 页数:6 大小:209.63KB
下载 相关 举报
直线、平面平行的判定及其性质-测试题(答案详解).pdf_第1页
第1页 / 共6页
直线、平面平行的判定及其性质-测试题(答案详解).pdf_第2页
第2页 / 共6页
直线、平面平行的判定及其性质-测试题(答案详解).pdf_第3页
第3页 / 共6页
直线、平面平行的判定及其性质-测试题(答案详解).pdf_第4页
第4页 / 共6页
直线、平面平行的判定及其性质-测试题(答案详解).pdf_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第 1 页 共 6 页直 线 、 平 面 平 行 的 判 定 及 其 性 质A一 、 选 择 题1 下 列 条 件 中 ,能 判 断 两 个 平 面 平 行 的 是 ( )A 一 个 平 面 内 的 一 条 直 线 平 行 于 另 一 个 平 面 ;B 一 个 平 面 内 的 两 条 直 线 平 行 于 另 一 个 平 面C 一 个 平 面 内 有 无 数 条 直 线 平 行 于 另 一 个 平 面D 一 个 平 面 内 任 何 一 条 直 线 都 平 行 于 另 一 个 平 面2 E, F, G 分 别 是 四 面 体 ABCD 的 棱 BC, CD, DA 的 中 点 , 则 此 四 面

2、体 中 与 过 E, F, G 的 截面 平 行 的 棱 的 条 数 是A 0 B 1 C 2 D 33 直 线 ,a b c, 及 平 面 , , 使 /a b成 立 的 条 件 是 ( )A / ,a b B / , /a b C / , /a c b c D / ,a b 4 若 直 线 m 不 平 行 于 平 面 , 且 m , 则 下 列 结 论 成 立 的 是 ( )A 内 的 所 有 直 线 与 m 异 面 B 内 不 存 在 与 m 平 行 的 直 线C 内 存 在 唯 一 的 直 线 与 m 平 行 D 内 的 直 线 与 m 都 相 交5 下 列 命 题 中 , 假 命 题

3、 的 个 数 是 ( ) 一 条 直 线 平 行 于 一 个 平 面 , 这 条 直 线 就 和 这 个 平 面 内 的 任 何 直 线 不 相 交 ; 过 平 面外 一 点 有 且 只 有 一 条 直 线 和 这 个 平 面 平 行 ; 过 直 线 外 一 点 有 且 只 有 一 个 平 面 和 这 条 直 线平 行 ; 平 行 于 同 一 条 直 线 的 两 条 直 线 和 同 一 平 面 平 行 ; a 和 b 异 面 , 则 经 过 b 存 在 唯一 一 个 平 面 与 平 行A 4 B 3 C 2 D 16 已 知 空 间 四 边 形 ABCD中 , ,M N 分 别 是 ,AB C

4、D 的 中 点 , 则 下 列 判 断 正 确 的 是 ( )A 12MN AC BC B 12MN AC BC C 12MN AC BC D 12MN AC BC 二 、 填 空 题7 在 四 面 体 ABCD 中 , M, N 分 别 是 面 ACD, BCD 的 重 心 , 则四 面 体 的 四 个 面 中 与 MN 平 行 的 是 _.8 如 下 图 所 示 , 四 个 正 方 体 中 , A, B 为 正 方 体 的 两 个 顶 点 , M, N, P分 别 为 其 所 在 棱 的 中 点 , 能 得 到 AB/面 MNP的 图 形 的 序 号 的 是 9 正 方 体 ABCD-A1

5、B1C1D1中 , E 为 DD1中 点 , 则 BD1和 平 面 ACE 位 置 关 系 是 第 2 页 共 6 页D CA BB1A1C1三 、 解 答 题10.如 图 , 正 三 棱 柱 111 CBAABC 的 底 面 边 长 是 2, 侧 棱 长 是 3, D是 AC的 中 点 .求 证 : /1CB平 面 BDA1 .11.如 图 , 在 平 行 六 面 体 ABCD-A1B1C1D1中 , E, M, N, G 分 别 是 AA1, CD, CB, CC1的 中点 , 求 证 : ( 1) MN/B1D1 ; ( 2) AC1/平 面 EB1D1 ; ( 3) 平 面 EB1D1

6、/平 面 BDG.B一 、 选 择 题1 , 是 两 个 不 重 合 的 平 面 , a, b是 两 条 不 同 直 线 , 在 下 列 条 件 下 , 可 判 定 的 是 ( )A , 都 平 行 于 直 线 a, bB 内 有 三 个 不 共 线 点 到 的 距 离 相 等C a, b是 内 两 条 直 线 , 且 a , b D a, b是 两 条 异 面 直 线 且 a , b , a , b 2 两 条 直 线 a, b 满 足 a b, b , 则 a 与 平 面 的 关 系 是 ( )A a B a 与 相 交 C a 与 不 相 交 D a 3 设 ,a b表 示 直 线 ,

7、, 表 示 平 面 , P 是 空 间 一 点 , 下 面 命 题 中 正 确 的 是 ( )A a , 则 /a B /a , b , 则 /a bC / , ,a b , 则 /a b D , , / , /P a P a , 则 a 4 一 条 直 线 若 同 时 平 行 于 两 个 相 交 平 面 , 那 么 这 条 直 线 与 这 两 个 平 面 的 交 线 的 位 置 关 系 是 ( )A.异 面 B.相 交 C.平 行 D.不 能 确 定5.下 列 四 个 命 题 中 , 正 确 的 是 ( ) 夹 在 两 条 平 行 线 间 的 平 行 线 段 相 等 ; 夹 在 两 条 平

8、行 线 间 的 相 等 线 段 平 行 ; 如 果 一条 直 线 和 一 个 平 面 平 行 , 那 么 夹 在 这 条 直 线 和 平 面 间 的 平 行 线 段 相 等 ; 如 果 一 条 直 线 和 一个 平 面 平 行 , 那 么 夹 在 这 条 直 线 和 平 面 间 的 相 等 线 段 平 行A B C D 6 a, b 是 两 条 异 面 直 线 , A 是 不 在 a, b 上 的 点 , 则 下 列 结 论成 立 的 是A 过 A 有 且 只 有 一 个 平 面 平 行 于 a, bB 过 A 至 少 有 一 个 平 面 平 行 于 a, b第 3 页 共 6 页C 过 A

9、有 无 数 个 平 面 平 行 于 a, bD 过 A 且 平 行 a, b的 平 面 可 能 不 存 在二 、 填 空 题7 a, b, 为 三 条 不 重 合 的 直 线 , , , 为 三 个 不 重 合 的 平 面 , 直 线 均 不 在 平 面 内 , 给 出六 个 命 题 : aaaca c ccbababacb ca ; ;其 中 正 确 的 命 题 是 _.( 将 正 确 的 序 号 都 填 上 )8 设 平 面 , A, C , B, D , 直 线 AB 与 CD 交 于 S,若 AS=18, BS=9, CD=34, 则 CS=_.9 如 图 , 正 四 棱 柱 ABCD

10、-A1B1C1D1中 , E, F, G, H 分 别 是 棱CC1, C1D1, DD1, DC 中 点 , N 是 BC 中 点 , 点 M 在 四 边 形 EFGH及 其 内 部 运 动 , 则 M 满 足 时 , 有 MN 平 面 B1BD D1三 、 解 答 题10.如 图 , 在 正 四 棱 锥 P ABCD 中 , PA AB a ,点 E在 棱 PC上 问 点 E在 何 处 时 , /PA EBD平 面 , 并 加 以 证 明 .11.如 下 图 , 设 P为 长 方 形 ABCD所 在 平 面 外 一 点 , M, N分 别 为 AB, PD上 的 点 , 且 MBAM =

11、NPDN ,求 证 : 直 线 MN 平 面 PBC. EPD CBA第 4 页 共 6 页参 考 答 案 A一 、 选 择 题1 D【 提 示 】 当 l 时 , 内 有 无 数 多 条 直 线 与 交 线 l平 行 , 同 时 这 些 直 线 也 与 平 面 平行 .故 A, B, C 均 是 错 误 的2 C【 提 示 】 棱 AC, BD与 平 面 EFG平 行 , 共 2条 .3 C【 提 示 】 / , ,a b 则 /a b或 ,a b异 面 ; 所 以 A错 误 ; / , / ,a b 则 /a b或 ,a b异 面或 ,a b相 交 , 所 以 B错 误 ; / , ,a

12、b 则 /a b或 ,a b异 面 , 所 以 D错 误 ; / , /a c b c,则 /a b, 这 是 公 理 4, 所 以 C正 确 .4 B【 提 示 】 若 直 线 m 不 平 行 于 平 面 , 且 m , 则 直 线 m 于 平 面 相 交 , 内 不 存 在 与 m平 行 的 直 线 .5 B【 提 示 】 错 误 . 过 平 面 外 一 点 有 且 只 有 一 个 平 面 和 这 个 平 面 平 行 , 有 无 数 多 条 直 线与 它 平 行 . 过 直 线 外 一 点 有 无 数 个 平 面 和 这 条 直 线 平 行 平 行 于 同 一 条 直 线 的 两 条 直

13、线 和同 一 平 面 平 行 或 其 中 一 条 在 平 面 上 .6. D【 提 示 】 本 题 可 利 用 空 间 中 的 平 行 关 系 , 构 造 三 角 形 的 两 边 之 和 大 于 第 三 边 .二 、 填 空 题7 平 面 ABC, 平 面 ABD【 提 示 】 连 接 AM 并 延 长 , 交 CD 于 E, 连 结 BN 并 延 长 交 CD 于 F, 由 重 心 性 质 可 知 , E、F 重 合 为 一 点 , 且 该 点 为 CD 的 中 点 E, 由 MAEM = NBEN =21得 MN AB.因 此 , MN 平 面 ABC且 MN 平 面 ABD.8. 【 提

14、 示 】 对 于 , 面 MNP/面 AB,故 AB/面 MNP.对 于 , MP/AB,故 AB/面 MNP,对 于 ,过 AB找 一 个 平 面 与 平 面 MNP相 交 , AB与 交 线 显 然 不 平 行 , 故 不 能 推 证 AB/面 MNP.9 平 行【 提 示 】 连 接 BD交 AC于 O, 连 OE, OE BD1, OEC平 面 ACE, BD1 平 面 ACE.三 、 解 答 题10.证 明 : 设 1AB 与 BA1 相 交 于 点 P, 连 接 PD, 则 P为 1AB 中 点 ,D为 AC中 点 , PD/ CB1 .又 PD平 面 BA1 D, CB1 /平

15、面 BA1 D第 5 页 共 6 页11.证 明 : ( 1) M、 N分 别 是 CD、 CB的 中 点 , MN/BD又 BB1/DD1,四 边 形 BB1D1D是 平 行 四 边 形 .所 以 BD/B1D1.又 MN/BD, 从 而 MN/B1D1( 2) ( 法 1) 连 A1C1, A1C1交 B1D1与 O点四 边 形 A1B1C1D1为 平 行 四 边 形 , 则 O点 是 A1C1的 中 点E是 AA1的 中 点 , EO是 AA1C1的 中 位 线 , EO/AC1.AC1面 EB1D1 , EO面 EB1D1, 所 以 AC1/面 EB1D1( 法 2) 作 BB1中 点

16、 为 H点 , 连 接 AH、 C1H, E、 H点 为 AA1、 BB1中 点 ,所 以 EH/C1D1, 则 四 边 形 EHC1D1是 平 行 四 边 形 , 所 以 ED1/HC1又 因 为 EA/B1H, 则 四 边 形 EAHB1是 平 行 四 边 形 , 所 以 EB1/AH AHHC1=H, 面 AHC1/面 EB1D1.而 AC1面 AHC1, 所 以 AC1/面 EB1D1( 3) 因 为 EA/B1H, 则 四 边 形 EAHB1是 平 行 四 边 形 , 所 以 EB1/AH因 为 AD/HG, 则 四 边 形 ADGH是 平 行 四 边 形 , 所 以 DG/AH,

17、所 以 EB1/DG又 BB1/DD1,四 边 形 BB1D1D是 平 行 四 边 形 . 所 以 BD/B1D1.BDDG=G, 面 EB1D1/面 BDG B一 、 选 择 题1 D【 提 示 】 A错 , 若 a b, 则 不 能 断 定 ; B错 , 若 A, B, C 三 点 不 在 的 同 一 侧 , 则 不能 断 定 ; C错 , 若 a b, 则 不 能 断 定 ; D 正 确 .2 C【 提 示 】 若 直 线 a, b 满 足 a b, b , 则 a 或 a 3 D【 提 示 】 根 据 面 面 平 行 的 性 质 定 理 可 推 证 之 .4 C【 提 示 】 设 =l

18、, a , a , 过 直 线 a 作 与 、 都 相 交 的 平 面 , 记 =b, =c,则 a b 且 a c, b c.又 b , =l, b l. a l.5 A【 提 示 】6 D【 提 示 】 过 点 A 可 作 直 线 a a, b b, 则 ab=A, a, b可 确 定 一 个 平 面 , 记 为 .如果 a , b , 则 a , b .由 于 平 面 可 能 过 直 线 a、 b 之 一 , 因 此 , 过 A 且 平行 于 a、 b 的 平 面 可 能 不 存 在 .二 、 填 空 题7. 8.68或 368第 6 页 共 6 页【 提 示 】 如 图 ( 1) ,

19、由 可 知 BD AC, SASB = SCSD , 即 189 = SCSC 34 , SC=68.SSA AB BC C (1) (2)D D如 图 ( 2) , 由 知 AC BD, SBSA = SDSC = SCCDSC , 即 918= SCSC34 . SC= 368.9 MHF【 提 示 】 易 证 平 面 NHF 平 面 BD D1 B1, M 为 两 平 面 的 公 共 点 , 应 在 交 线 HF 上 .三 、 解 答 题10 解 : 当 E 为 PC 中 点 时 , /PA EBD平 面 证 明 : 连 接 AC, 且 AC BD O , 由 于 四 边 形 ABCD

20、为 正 方形 , O 为 AC 的 中 点 , 又 E 为 中 点 , OE 为 ACP 的 中 位 线 , /PA EO, 又 PA EBD平 面 , /PA EBD平 面 .11 证 法 一 : 过 N 作 NR DC 交 PC 于 点 R, 连 接 RB, 依 题 意得 NRNRDC = NPDN = MBAM = MBMBAB = MBMBDC NR=MB. NR DC AB, 四 边 形MNRB 是 平 行 四 边 形 . MN RB.又 RB 平 面 PBC, 直 线 MN 平 面 PBC.证 法 二 : 过 N 作 NQ AD 交 PA 于 点 Q, 连 接 QM, MBAM = NPDN = QPAQ , QM PB.又NQ AD BC, 平 面 MQN 平 面 PBC. 直 线 MN 平 面 PBC. OFA B CD P E

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报