收藏 分享(赏)

自动控制原理 总复习题【西安交通大学】.ppt

上传人:tangtianxu1 文档编号:3103401 上传时间:2018-10-03 格式:PPT 页数:36 大小:1.90MB
下载 相关 举报
自动控制原理 总复习题【西安交通大学】.ppt_第1页
第1页 / 共36页
自动控制原理 总复习题【西安交通大学】.ppt_第2页
第2页 / 共36页
自动控制原理 总复习题【西安交通大学】.ppt_第3页
第3页 / 共36页
自动控制原理 总复习题【西安交通大学】.ppt_第4页
第4页 / 共36页
自动控制原理 总复习题【西安交通大学】.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、1,例1.某系统的结构图如图所示。试求系统的传递函数 。,总 复 习 题,2,1.解:,3,4,5,6,所以,提示:本题用等效变换法做较复杂。主要困难可能出现在分支点和相加点互相 移动时(本例中的第一步变换),其移动的思路大致是:(参考图a)当原图 的反馈点(即分支点)A前移到 点时, 点的反馈值比在A点反馈少了 , 为了保证变换的等效性,需在相加点 处加以补偿,大小为 ,于是有了 图a。下例的变换也是这个思路,碰到这类分支点和相加点需要相互移动的题目, 可用梅逊公式求解较为简单。,7,例2. 图(a)为系统结构图,图(b)为某典型单位阶跃响应。试确定,,,和 的值。,(a)系统结构图 (b)

2、阶跃响应曲线,8,所以,又因为,所以,2. 解: 因为,9,据题意知,解得,解得,提示:该例显示了由动态性能指标求系统参数的方法。,故,10,例3. 系统的结构图如图所示,试判别系统的稳定性。若不稳定求在S右半平面的极点数。,11,系统的特征方程为,看出特征方程的系数不全为正,所以系统是不稳定的。为了求出S右半平面 的极点数,列劳斯阵如下:,第三行元素全为零,对辅助方程,求导得,3. 解:系统的闭环传递函数为,12,可用8,0替换第三行0,0;第四行第一列元素为零;用小正数 替换0,继续排列劳斯阵。劳斯阵第一列元素变号一次,说明特征方程有一个正根。劳斯阵有一行元素全为零,说明可能有大小相等、符

3、号相反的实根;或一对共轭虚根;或对称于虚轴的两对共轭复根。解辅助方程得:,这样特征方程可写为,可见,系统在S右半平面有一个根 ,在虚轴上有两个根 , , 在S左半平面有两个根 , 。,,,提示:该例显示了用劳斯判据是系统稳定性的方法。讨论了两种特殊情况(劳斯阵某行元素全为零和第一列某元素为零)下劳斯阵的组成方法。,13,例4.闭环控制系统的结构图如图所示。试求满足下列两个条件的三阶开环传递函 数 ,应满足的条件: (1)由单位阶跃函数输入引起的稳态误差为零; (2) 闭环系统的特征方程为 。,14,由题意知稳态误差为,所以,设,则闭环系统传递函数为,则 分母的常数项应为零。,4. 解:由单位阶

4、跃引起的误差为,15,特征方程式为,比较系数得,即,,,,,,,16,试计算闭环系统的动态性能指标 和 。,例5. 某单位反馈随动系统的开环传递函数为,17,5. 解:这是一个高阶系统,我们注意到极点离虚轴的距离较极点离虚轴远的 多,这个极点对闭环系统瞬态性能的影响很小,因此,可以忽略该极点,而使系统近似为二阶系统。近似原则如下: 保持系统的稳态值不变; 瞬态性能变化不大。根据这个原则,原开环传递函数近似为,近似后的闭环传递函数为,18,所以,提示:该例显示了高阶系统近似为二阶系统的方法,请注意近似原则。,则,19,(3)当 时,单位阶跃响应有超调吗?,例6已知一单位反馈系统的开环传递函数为,

5、(1)画根轨迹,确定使闭环系统稳定的 值范围。 (2)确定使系统单位阶跃响应是非振荡的 值范围。,20,根轨迹图,由,得,解得,由此可知 是会合点, 是分离点。分离角和会合角都为 。,6.解:(1)画根轨迹,确定分离点和会合点: 此时,21,确定根轨迹与虚轴的交点:特征方程为,此时特征根为 ,是根轨迹与虚轴的交点。 由系统稳定的充要条件知,当 时,闭环系统稳定。,当 时,特征方程为,根轨迹是圆,如图所示。,22,(2)由根轨迹的幅值条件知,会合点的增益为,(3)当 时,单位阶跃响应有超调吗?,?,23,当输入为单位阶跃响应时,输出为,,,由 的表达式和单位阶跃响应曲线图可知,单位阶跃响应有超调

6、。,提示:当系统闭环传递函数有零点存在时,会使响应速度加快,超调增大。,(b)阶跃响应曲线,24,例7已知系统闭环根轨迹和反馈通路的零、极点分布如图的(a)和(b)所示,试确定闭环存在重极点情况下的闭环传递函数,此时反馈通路根轨迹增益为 。,图 根轨迹和 的零、极点分布,25,其中 , 为前向通路的根轨迹增益; 为反馈通路的根轨迹增益。,7. 解:由图(a)可知系统的开环传递函数为,由图(b)知,因此,系统结构如图所示。,由幅值条件知,分离点处,26,由已知条件知在分离点处,因此,有,由 ,可知闭环极点之和等于开环极点之和,将分离点 代入得,由此可知,当 时,闭环系统有重根极点,且三个极点为

7、,和 ,于是,27,提示:(1)系统开环根轨迹增益为前向通路根轨迹增益和反馈通路根轨迹 增益的乘积。(2)系统闭环根轨迹增益等于前向通路的根轨迹增益。(3)系统的闭环零点由前向通路传递函数的零点和反馈通路传递函 数的极点所组成。,28,例8已知单位反馈系统的开环传递函数为,(1)画出系统的根轨迹; (2)确定系统呈阻尼振荡瞬态响应的 值范围; (3)求产生持续等幅振荡时的 值和振荡频率; (4)求主导复数极点具有阻尼比为 时的 值和闭环极点。,29,于是,渐近线与实轴交点为 。,8. 解:(1)画根轨迹 该系统有三条根轨迹,开环极点为 。 求渐近线,当 时,当 时,,, 求分离点:由开环传递函

8、数知 , 代入方程,有,30,不在根轨迹上,舍去。,分离角为 。,根据幅值条件可求出分离点处的增益,,,是分离点,, 根轨迹与虚轴的交点特征方程为,劳斯表为,31,当 时,辅助方程为,解得,根轨迹如图所示。,32,(2)当 时,系统闭环主导极点为一对共轭复数极点,系统瞬态响应为欠阻尼状态,阶跃响应呈阻尼振荡形式。,(3)当 时,系统有一对共轭虚根,系统产生持续等幅振荡, 。,(4)阻尼角 ,解方程或由图可知阻尼角为 的主导极点,根据幅值条件知,由于 ,因此闭环极点之和等于开环 极点之和,另一个闭环极点为,33,例9. 最小相角系统对数幅频渐近特性如图所示,请确定系统的传递函数。,34,9. 解:由图知在低频段渐近线斜率为0,因为最小交接频率前的低频段 ,故 。渐近特性为分段线性函数,在各交接频率处,渐近特性斜率发生变化。,处斜率变化 ,属一阶微分环节。,在 处斜率变化 ,属惯性环节。,在 处斜率变化 ,属惯性环节。,在 处斜率变化 ,属惯性环节。,在 处斜率变化 ,属惯性环节。,35,因此系统的传递函数具有下述形式,式中, 待定,由 得 。,因渐近线特性为折线,相邻的两交接频率间,渐近特性为直线, 故若设斜率为 , 、 、为该直线上的两点, 则有直线方程,或,36,确定 : ,所以,确定 : ,所以,确定 : ,所以,确定 : ,所以,于是,所求的传递函数为,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报