1、雷 达 恒 虚 警 研 究摘 要 :本文对雷达 CFAR 处理方法进行了综述 ,讨论了 CFAR 检测方法的方向:参量和非参量的 CFAR 方法。明确了空域 CFAR 处理的概念,并着重讨论了空域 CFAR 处理研究中 ML 类、OS 类和自适应 CFAR 算法。也简单介绍了时域 CFAR处理和非参量 CFAR 处理的方法。并且提到了分布式 CFAR 检测 ,阵列信号 CFAR处理 ,极化 CFAR 处理等极具潜力的研究方向。最后针对几种典型的恒虚警检测算法的性能、优缺点进行了讨论。关键字:参量和非参量 CFAR 空域 CFAR 时域 CFAR ML-CFAR OS-CFAR 自适应 CFAR
2、性能分析雷达系统仿真第页Title:Method and Principle of Radar signal CFAR Abstract:This paper reviews on the radar CFAR processing method, the direction of CFAR method for detection: parametric and non-parametric CFAR method. Make a clear concept of the spatial CFAR processing. And discusses the class ML, class O
3、S and adaptive CFAR algorithm of the spatial CFAR. Also simply introduced the time domain CFAR processing method and non-parameteric CFAR processing. And mentioned the distributed CFAR detection, array signal processing of CFAR, research direction of polarization CFAR processing potential. Finally,
4、the performance and advantages and disadvantages of several typical CFAR detection algorithm are discussed. Keywords:parametric and non-parametric CFAR spatial CFAR time domain CFARML-CFAR OS-CFAR adaptive CFAR performance analysis雷达系统仿真第页雷达系统仿真第页目次1 引言 12 恒虚警处理方法的分类23 均值类(ML)CFAR 处理 33.1 单元平均(CA-CF
5、AR)检测算法 33.2 最大选择(GO-CFRA)检测算法 43.3 最小选择(SO-CFAR)检测算法 54 有序统计量(OS-CFAR)处理 64.1 顺序统计量检测算法 64.2 删除均值(CMLD-CFAR)有序统计量算法 64.3 削减平均(TM-CFAR)有序统计量算法 74.4 其他有序统计量算法 75 自适应 CFRA 处理 86 时域 CFAR 处理杂波图 CFAR 检测 97 非参量 CFAR 处理107.1 符号检测器 107.2 Wilcox on 检测器 108 其他 CFAR 处理的研究118.1 频域 CFAR 检测 118.2 分布式 CFAR 检测 118.
6、3 阵列信号 CFAR 检测118.4 极化 CFAR 检测118.5 多分层 CFAR 处理129 对均值类及有序统计量类算法的性能分析 139.1 均匀杂波背景下的检测性能 139.2 五种恒虚警方法的 ADT139.3 强干扰目标下的检测性能 149.4 均值类(ML)的优缺点 149.5 有序统计量类(OS)的优缺点 15结论 16致谢 17参考文献 18雷达系统仿真 第 1 页1 引言雷达是军事和民用领域主要的目标探测工具,它的主要目的是在各种干扰存在的杂波背景下检测出有用目标。这些干扰包括接收机内部热噪声、地物、雨雪、海浪等杂波,电子对抗措施,人工有源和无源干扰(如干扰发射机和金属
7、箔条) ,以及与有用目标混杂在一起的邻近干扰目标和它的旁瓣(如采用脉冲压缩的雷达)。一般说来,这些干扰不是单一存在的,实际的雷达工作背景都是多种干扰的混合。如何在极为复杂的杂波背景下准确区分有用目标回波,并得到目标的一些参数,这是雷达目标信号检测的重点和难点所在。雷达目标自动检测中若采用固定阈值检测,杂波功率的微小增加将会使得虚警率剧烈变化,从而导致雷达数据处理设备过载,雷达无法工作,这时即使信噪比很大也无法做出正确判断。故在对回波信号进行提取时,需要检测器具有恒虚警性能。恒虚警处理就是一种提供检测阀值的数字信号处理算法,其算法有许多。本文将介绍恒虚警处理的几种方法及其原理,并简述其的适用范围
8、和性能。雷达系统仿真 第 2 页2 恒虚警处理方法的分类对 CFAR 的研究只是在近三十年才发展起来的。但是现已成为国际雷达信号处理界的一个重要研究方向,并且形成了如下一些研究领域:高斯和非高斯杂波背景中的 CFAR 检测;参量和非参量 CFAR 方法;时域和频域的 CFAR 研究;标量和向量(阵列信号处理) CFAR 方法;单传感器和多传感器分布式 CFAR 检测;相关和不相关条件下的 CFAR 检测;以及在各种目标模型条件下和结合各种检测策略的 CFAR 处理的性能分析。这些领域是相互交叉的。而本文将 CFAR 分为参量和非参量两大类。参量 CFAR 方法适用于杂波分布类型已知的情况。按照
9、不同的参数估计方法,参量 CFAR 方法又可分为空域 CFAR 处理和时域 CFAR 处理。非参量 CFAR 方法适用于杂波分布未知的情况,无须关于背景噪声或杂波分布的先验信息。为了简化对 CFAR 检测的性能分析,Rohling 将均匀和非均匀杂波背景简化为 3 种典型情况, 即均匀背景、多目标和杂波边缘环境。根据这三种情况,空域 CFAR 处理就分为均值类(ML)CFAR 处理、有序统计量类(OS)CFAR 处理和自适应 CFAR 处理。参量 CFAR 处理中的另一类是时域 CFAR 处理,即杂波图CFAR 处理。在均值类(ML)CFAR 处理中,又有几种经典算法。它们分别是单元平均(CA
10、-) 、最大选择(GO-) 、最小选择(SO-)和杂波强度加权(WCA CFAR)检测。而自适应 CFAR 处理是现在热门研究的方向,人们已研究了许多类型的CFAR 处理技术,如 CCA、HCE、AC、GCMLD、ACCA 等。非参量 CFAR 处理中又分为基于符号的检测器和基于秩的检测器。雷达系统仿真 第 3 页3 均值类(ML)CFAR 处理CFAR 算法的基本流程如图 1 所示。输入信号包括检测单元 Y 和 2n 个参考单元。参考单元位于检测单元两侧,前后各 n 个。保护单元主要用在单目标情况下,防止目标能量泄漏到参考单元影响检测效果。Z 为总的杂波功率水平的估计,通过对 2n 个参考单
11、元的 CFAR 处理得到。 T 为标称化因子,它和 Z 的乘积作为参考门限电平。当检测单元的值超过 T Z 时,认为有目标,反之,认为无目标。一般情况下,杂波同噪声相互独立,且平方律检波后都满足指数分布。参考单元概率密度函数为 (1) 式中, 是噪声功率。Z 是一/21,0xfe个随机变量,它的分布取决于 CFAR 算法的选取以及参考单元的分布。虚警概率 Pfa 的表达式为(2)0PYTZ|HE(1/2)exp(y/)dM(/)fazZTZ其中,H0 表示没有目标,MZ ()称为矩母函数。3.1 单元平均(CA-CFAR)检测算法在 CA CFAR 检测器中,背景杂波功率水平 Z 为 2n 个
12、参考单元之和。(3)22111nnniiiiZXX指数分布是 (,)分布在 = 1 的特殊情况, 分布的概率密度函数为 (4) 。其中, 和 是两个参数,1/,0,xfxe()就是通常说的 函数,对于整数 ,它等于 (- 1) !。相应的概率分布函数用 G (,)表示,服从 分布的随机变量 X 记做 XG (,)。X 的矩母函数为 (5)1XM根据独立同分布的假设,第 i 个单元服从分布 xiG (1,)。由于两个独立随机变量和的矩母函数等于各随机变量的矩母函数的积,所以得到 Z G 雷达系统仿真 第 3 页(2n,) (6)将式 (5)、 式 (6)代入式 (2)得到 (7)所以,得到标21
13、TnfaP称化雷达系统仿真 第 4 页因子 T 的计算式,即 (8) 。1/2nfaTP图 1 CFAR 算法处理流程3.2 最大选择(GO-CFRA)检测算法最大选择 GO- CFAR 是选取前面 n 个参考单元之和与后面 n 个参考单元之和中的大者作为 Z。GO、 SO 算法的杂波功率水平估计方法如图 2 所示。图 2 SO、 GO-CFAR 算法处理流程对应 GO 算法, Z 的概率密度函数为(9) 12ZYYfzfFzfz其中, f 和 F 分别为概率密度函数和概率分布函数。可以推出检测算法的虚警概率为 (10)1, 0()nniifagoiPTT由上述表达式难以给出 T 的函数表达式
14、。本文根据给定的虚警概率,通过雷达系统仿真 第 4 页迭雷达系统仿真 第 5 页代求出 GO-CFAR 算法的 T,如表 1 所示。表 1 不同虚警率下 GO 算法的标称化因子 T3.3 最小选择(SO-CFAR)检测算法最小选择 SO CFAR 是选取前面 n 个参考单元之和与后面 n 个参考单元之和中的小者作为 Z。对应 SO 算法, Z 的概率密度函数为(11)1212zYYYYffzffzFfz可以推出检测算法的虚警概率为 (12)1,0nniifasoiPT本文根据给定的虚警概率,通过迭代求出 SO-CFAR 算法的 T,如表 2 所示。表 2 不同虚警率下 SO 算法的标称化因子
15、T雷达系统仿真 第 6 页4 有序统计量(OS-CFAR)处理4.1 顺序统计量检测算法顺序统计量 OS- CFAR 算法的原理是对参考单元由小到大作排序处理,取第 k 个样本作为 Z。可以推出 (13)1,0/kfaosiPniT同样地,本文根据给定的虚警率,通过迭代求出了 T,如表 3 所示。表 3 不同虚警率下 OS 算法的标称化因子 T4.2 删除均值(CMLD-CFAR)有序统计量算法由于 OS 处理只保留了一个有序参考采样 ,导致 CFAR 损失比 ML 类高。而 CMLD 和 TM(trimmed)通过预选删除点保留较多的有序参考采样 ,可以减小 CFAR 损失 ,而且又不失 O
16、S 在多目标环境中的优势。删除均值 (CMLD-CFAR) 将干扰目标从参考单元序列中排除出去 ,然后基于删除后的采样序列重新计算阀值。假设 x 1 , x 2 , , x R 是参考单元中的 R 个采样值 , T0 是对应整个参考单元的门限因子 , T1 是剔除高于 T0 对应的门限值的参考单元的门限因子。删除单元平均的 CFAR 检测方法如下:(1)求 R 个参考单元的和 ,然后将每个参考单元采样与门限 1 ( S 1 = T0 ZR0 )进行比较,将超过这一门限的采样值从和值中除去 ,产生一个新的和。(2)将剩余参考单元采样与门限 2 ( S2 =T1 ZR1 )进行比较。再除去一些超过
17、这一门限的采样值 ,使剩下的参考单元采样组成一个新的和。这个过程继续下去 ,直到检测不到尖峰信号超过门限时为止。这种算法总是收敛的 ,在若干级计算之后不出现尖峰信号就是这种方法终雷达系统仿真 第 6 页止的准则。雷达系统仿真 第 7 页删除单元均值的 CFAR 检测算法能有效地抑制多干扰目标带来的检测损失 ,特别是在目标密集的环境中 ,具有更显著的检测性能。4.3 削减平均(TM-CFAR)有序统计量算法TM-CFAR 是削减掉从最小采样值起的 r1 个较小和从最大采样值起的 r2 个较大的参考单元采样值, 并取其余的参考单元采样值的和作为杂波功率水平估计。4.4 其他有序统计量算法OS 处理
18、的另一个缺点是排序处理的时间长 ,具有自动筛选技术的 GOS 类方法是一种解决方法。此外 ,近年来出现的对有序统计量进行线性加权的方法 ,如广义有序统计量 CFAR 检测器,L1 CFAR 检测器,LCOS(Linearly Combined Order Statistics) CFAR 检测器以及基于最佳和准最佳加权的有序统计量 CFAR 检测器。雷达系统仿真 第 8 页5 自适应 CFRA处理自适应 CFAR 检测可以自适应地确定选择逻辑 ,算法和参数。例如 ,估计杂波边缘位置的 HCE,删除点可变的 VTM(Variably Trimmed Mean),筛选采样的 E (Excision
19、) CFAR 处理和 EXGO- CFAR,以及逼近单元 AC(ApproachCell) CFAR 等等。Barboy 提出一种多步删除方案 ,逐一单元地进行检测以确定删除点 ,使干扰目标逐一被删除。类似的删除方案还有 Himonas 等人提出的一系列基于有序统计量的自适应确定删除点的方法。例如 , GCMLD ( G ener2alised Cens ored Mean Level Detector),ACMLD(Automatic Cen2s ored Mean Level Detector) ,GO/ SO 和 GT L (G eneralised T wo Lev2el) CMLD,
20、ACGO(Adaptive Cens ored Greates Of)。最近 ,Varshney 提出一种基于数据变化性的 VI CFAR 检测器(Variability Index)。它利用两个统计量检验杂波背景的均匀性 ,然后自适应地确定由两个局部估计形成检测阈值的方法。雷达系统仿真 第 8 页雷达系统仿真 第 9 页6 时域 CFAR处理杂波图 CFAR检测地物杂波在空间上的 “均匀性宽度” 很窄 ,但在时间上较平稳。若采用空域 CFAR 处理 ,CFAR 损失将很大。因此需采用 “时间采样” 法 ,以天线扫描周期为周期进行采样 ,依靠对时间采样估计背景杂波功率水平。此时将雷达观测空间分
21、成很多个图单元构成杂波图。杂波图存储每个图单元的背景杂波功率水平估值 ,每个值依靠迭代算法更新。一个图单元包含 M 个分辨单元 , M = 1 时被称为杂波图的点技术 , M 1 时被称为杂波图的面技术。对时间单元采样的典型处理方法是对多次扫描做指数加权平均。加权系数决定 CFAR 损失和等效时间常数。在保证单个图单元中的局部均匀性的条件下 , M 值越高 , CFAR 损失越小。 M 减小会使一个图单元中多目标环境出现的概率减小 ,但会使存储容量增加。在多个扫描周期中存在的低速目标会使杂波图 CFAR 检测性能严重下降。适当地选择 M 和等效时间常数可以减小 “遮蔽效应” 的影响。另一种方法
22、是对图单元中的分辨单元采样进行预处理 ,如 L 滤波。雷达系统仿真 第 10 页7 非参量 CFAR处理当假设背景杂波模型与实际不符时 ,参量 CFAR 检测就失去了 CFAR 能力。非参量 CFAR 方法 ,通过对大量杂波采样和信号加杂波采样之间的比较统计地确定目标是否存在 ,使虚警概率与背景分布无关 ,因此也称为分布自由的 CFAR检测方法。7.1 符号检测器符号检测器是一种最简单的非参量检测器 ,几乎所有适用于雷达系统实现的非参量检测都属于符号检测的修正型。符号检测需要匹配于发射信号的单脉冲匹配滤波 ,这意味着要求已知信号相位 ,这往往是不可实现的。采用正交双通道设置 ,便构成修正的符号
23、检测器来解决该问题。其对相干脉冲的检测都是做中值偏移检验。然而对于非相干脉冲链 ,每个脉冲的相位是随机的 ,因此不能做中值偏移检验。两样本符号可以克服这个限制。广义符号检测器(也称为秩和检测器,rank - sum)和秩二元积累检测器(RankQuantization)是两种两样本符号检测器 。基于符号检验的检测器的检测效率损失很大 ,采用条件检验可以使性能获得显著改善 ,并且实现的复杂性增加很小。7.2 Wilcox on检测器另一种变换是基于检测单元采样相对于参考单元采样的秩,如 Wilcox on检测器。Wilcox on 检测也需要匹配于发射信号的单脉冲匹配滤波,因此采用正交双通道设置
24、 ,便构成修正的 Wilcox on 检测器来解决该问题。 MW(Mann -Whitheny)检测器是两样本 Wilcox on 检测器,可用来克服非相干脉冲链不能做种植偏移检验这个限制。基于秩的检测器 ,如 Wilcox on 检测器通常也比基于符号检验的检测器的性能好。Wilcox on 检测器的主要缺点是求秩的计算量在大采样数时很大。基于条件检验的 Wilcox on 检测器删除一些小采样 ,用其余的采样计算检测统计量 ,可以使求秩的计算量减小。雷达系统仿真 第 11 页8 其他 CFAR处理的研究8.1 频域 CFAR 检测CFAR 处理可以在频域上进行。它的背景干扰包括接收机热噪声
25、 ,旁瓣杂波 ,主瓣杂波剩余。对于机载 PD 雷达 ,在 DFT 之后可以采用频域 CA - CFAR 检测器 ,Dicke - fix 检测器 ,秩和(RS)检测器。从实际应用情况来看 ,美国 F -15战斗机的 APG- 63 雷达在高和中 PRF 的 PD 工作状态下已经在多普勒滤波器组后采用了频域 CA - CFAR 技术。F -16 机载 PD 雷达在中 PRF 下视工作时也采用了自适应 CFAR 技术。近年来 ,一些学者又提出了新的频域 CFAR 检测方法。例如 ,文献提出了一种阈值自适应于信号频谱特性的方法。Trunk 和 Gordon 提出了一种利用目标的多普勒相位和幅度的 M
26、L 估计抑制杂波剩余来控制虚警的方法。8.2 分布式 CFAR 检测多传感器分布式检测系统可以提高系统反应速度和生存能力、 增加覆盖区域和监视目标数 ,并且提高系统在单个接收机失灵情况下的可靠性、 提供更高的总的信噪比。Ten2ney 和 Sandell 首先将经典 Bayesian 检测理论扩展到了分布式系统 ,分析了两个传感器和二元假设检验的情况。此后 ,Barkat 将 CFAR检测展到了多传感器分布式结构。最近文献研究了机遇局部检测统计量的分布式 CFAR 检测。8.3 阵列信号 CFAR检测一些时空二维处理方法本身就具有内在的 CFAR 性质。但是这种内在的 CFAR 性质是基于对背
27、景杂波服从高斯分布的假设。在非高斯杂波背景中 ,CFAR性质一般是不成立的。并且考虑到很多阵列信号处理方法并不具有 CFAR 性质 ,因此阵列信号的 CFAR 处理有待于进一步研究。8.4 极化 CFAR检测极化雷达可以测量雷达反射目标的散射矩阵 ,并且处理多变量信号而不只是一个通道的信息。不同性质反射体的散射矩阵是不同的 ,可以根据这种差别分辨目标和杂波。与通常的 CFAR 检测器相比 ,极化 CFAR 检测器的性能在各种背景中均有明显的增强。雷达系统仿真 第 12 页8.5 多分层 CFAR处理多分层的 CFAR 处理算法是一种既能在各种干扰背景中自适应地提供贴近干扰的检测阀值 ,同时又便
28、于工程实现的 CFAR 处理算法。假设 x 1 , x 2 , , x R 是参考单元中的 R 个采样值 , s 1 , s 2 , , s k 是从低到高的 k 层门限值。参考单元中的 R 个采样值分别与每层门限值进行比较 ,计算出高于每一层门限值的采样个数。 假设从低到高高于每一层门限值的采样个数分别为 Y1 , Y2 , , Yk ,高于第 j 层门限 sj 的采样个数为 Yj(1jk) , Yj 通过如下方法累计:满足 xn s j 1nR , 1jk则 Yj = Yj + 1;假设高于相邻两级门限的采样个数分别为 Yj - 1、 Yj,那么 Yj - 1 $ Yj 的差值小于某一参考
29、值 N 时 ,选取 s j 作为检测门限 S。如果 Yj - 1 $ Yj N 1jk 则 S = s j 1jk 多分层 CFAR 处理算法的方框图如图 3 所示。图 3 多分层 CFAR 处理算法方框图雷达系统仿真 第 13 页9 对均值类及有序统计量类算法的性能分析本文只针对均值类中的 CA、GO、SO 三种和有序统计量类中的 OS、CMLD 这五种算法进行性能的分析与比较。9.1 均匀杂波背景下的检测性能图 4 所示是这五种 CFAR 在均匀杂波背景下的检测概率曲线。可以看出,在均匀背景下 CA-CFAR 的检测性能最好。依次为 GO CFARCMLD-CFAR 和 OS- CFAR。
30、性能最差的是 SO-CFAR。在信噪比 (SNR) 较低或 SNR 大于 25dB 时,五种 CFAR 的检测性能相当。SNR 为 10 20dB 时,CA-CFAR 的检测性能明显优于SO-CFAR 和 OS- CFAR 。在相同的信噪比下,CA-CFAR 的检测概率比 SO-CFAR 约高 0.05,比 OS- CFAR 约高 0.03。而在相同的检测概率下,GO-CFAR 所需的信噪比大约比 CA-CFAR 高 0.75 dB,而 GO-CFAR 和 CMLD-CFAR 的检测性能则与其相当。图 4 五种 CFAR 在均匀杂波背景下的检测概率曲线9.2 五种恒虚警方法的 ADT在 CFA
31、R 处理器性能分析中 Rohling 定义了 ADT,即平均判决阈值。这是一个标称化的量,也是计算检测性能损失的一种可供选择的度量,不依赖于检测概率。其定义式为 (14) ETZAD表 4 列出了这五种 CFAR 及最优检测器在参考单元数为 32 虚警概率为 10-6雷达系统仿真 第 13 页时的 ADT 值。雷达系统仿真 第 14 页表 4 五种 CFAR 的 ADT 值ADT 也可以作为 CFAR 检测器在均匀背景中的检测性能与最优检测器之差别的一种度量。ADT 越小,表示检测性能越好,检测概率越高。9.3 强干扰目标下的检测性能图 5 是这五种 CFAR 在有一个 Swerling型强干
32、扰目标环境下的检测概率曲线. 其中 OS -CFAR 的 k 值为 26,CMLD-CFAR 中的 r 取 1。很明显 GO-CFAR 和CA-CFAR 的性能急剧恶化。在较大信噪比 (大于 30 dB) 的情况下,它们的检测概率也比较低。CMLD-CFAR 在该环境中的性能最好,OS-CFAR 的性能次之,但与其相差不大。SO-CFAR 的检测性能不如 CMLD-CFAR 和 OS-CFAR,但明显优于 CA-CFAR 和 GO-CFAR。图 5 五种 CFAR 在有一个 Swerling型强干目标环境下的检测概率曲线94 均值类(ML)的优缺点这几种均值类 CFAR 处理算法各有利弊。各种
33、雷达系统中用得最多的 CFAR检测方法就是 CA 检测算法。CA 在均匀杂波背景中的检测性能最好,但在非均匀背景中性能严重下降;GO 具有很好的抗边缘杂波能力和在均匀杂波背景中较好的检测性能,但在多目标环境中的检测性能极差;S0 具有较好的抗击干扰目标的能力,但在均匀杂波背景中的检测性能和抗边缘杂波性能都很差;虽然雷达系统仿真 第 14 页WCA 的雷达系统仿真 第 15 页性能比较全面,但需要关于干扰的先验信息,自适应检测能力受到限制。9.5 有序统计量类(OS)的优缺点有序统计量 OS(order statistics)方法源于数字图像处理的排序处理技术,它在抗干扰方面作用显著。在多目标环
34、境中,它相对于均值类 CFAR 处理算法具有较好的抗干扰目标的能力,同时在均匀杂波背景和杂波边缘环境中的性能下降也适度的、可以接受的。有序统计量 CFAR 处理算法的关键是 k 值的选取,在均匀杂波背景和均匀目标视频的情况下,选取适当的 k 值,可以达到较满意的检测性能。但是在实际的多目标环境中,如 k 值设定得较大,可能会在多目标环境中产生严重的覆盖效应;如 k 值设定得较小,可能会在少目标环境中产生虚警尖峰明显上升的情况。同时要对所有采样值进行排序,在工程实现上很难保证实时性,难度较大。雷达系统仿真 第 16 页结论本文对雷达 CFAR 处理方法进行了综述 ,讨论了研究 CFAR 检测方法
35、的方向:参量和非参量的 CFAR 方法。明确了空域 CFAR 处理的概念和其在众多 CFAR 处理方法中的地位,并着重讨论了空域 CFAR 处理研究中 ML 类、OS 类和自适应 CFAR 算法。也简单介绍了时域 CFAR 处理和非参量 CFAR 处理的方法。并且提到了分布式 CFAR 检测 ,阵列信号 CFAR 处理 ,极化 CFAR 处理等极具潜力的研究方向。最后针对几种典型的恒虚警检测算法的性能、优缺点进行了讨论。可见 CA-CFAR 在均匀背景中性能优越,但在多目标和杂波边缘的性能较差。GO-CFAR只解决了杂波边缘问题,在多目标环境下性能不好。SO-CFAR 也只解决了多目标环境下的
36、问题。CMLD-CFAR 在均匀背景和多目标环境下性能都较好,但参考窗中的采样值排序时间较长。在实际中,根据不同的需要选择使用的检测算法,以提高系统的检测性能。应该指出 ,对雷达 CFAR 处理的理论研究经过几十年的发展,已经积累了大量的理论和方法 ,今后工作的一个重要方面是要将一些有效的 CFAR 算法转化成实际的系统。雷达系统仿真 第 17 页致谢首先,感谢赵兆老师对雷达系统仿真课程的悉心指导及讲解,使我受益颇多。其次,感谢许志勇、顾红老师对雷达原理课程的讲解,令我对雷达基础知识有了一定的了解。最后,感谢同学们对我的帮助,令我顺利的完成了报告。雷达系统仿真 第 18 页参考文献1何友,关键
37、,彭应宁. 雷达自动检测与 CFAR 处理.北京,清华大学出版社,1999.2 何友,关键,彭应宁,孟祥伟. 雷达自动检测和 CFAR 处理方法综述. 系统工程与电子技术,2001,第 23 卷 ,第 1 期.3 徐从安,何友,简涛,孙伟超. 空域 CFAR 处理方法综述 . 海军航空工程学院学报,2011,第 26 卷 ,第 4 期.4 关键,何友. 两种恒虚警检测器在干扰边缘中的性能分析J.电子科学学刊, 1996,18(3):243-248. 5 关键,何友.MOSCA-CFAR 检测器在干扰边缘中的性能分析J.信号处理, 1995,11(4):237-244. 6 关键,何友.OSCAGO-CFAR 检测器在干扰边缘中的性能分析J.电子学报, 1996,24(3):56-60.7 陈玺,杨大磊 . 雷达信号检测中恒虚警处理的算法研究. 舰船电子工程,2007,总第 160 期,第 4 期.8 刘朝军 ,张欣,王守权 . 雷达目标恒虚警检测算法研究 . 舰船电子工程,2008,总第 169 期,第 7 期.9 向敬成,张明友. 雷达系统 M . 北京:电子工业出版社, 200110 王延暴,郝小宁,强勇. 五种恒虚警方法性能分析. 火控雷达技术, 2006 年3 月,第 35 卷.11 孟祥伟等.采用子滑窗技术的修正剔除平均恒虚警检测算法J.仪器仪表学报, 2001,6.