收藏 分享(赏)

高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc

上传人:tangtianxu1 文档编号:3016210 上传时间:2018-10-01 格式:DOC 页数:66 大小:2.69MB
下载 相关 举报
高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc_第1页
第1页 / 共66页
高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc_第2页
第2页 / 共66页
高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc_第3页
第3页 / 共66页
高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc_第4页
第4页 / 共66页
高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评).doc_第5页
第5页 / 共66页
点击查看更多>>
资源描述

1、高中数学教学案例设计汇编(中 部)10、直线与平面平行的判定一、教学内容分析:本节教材选自人教 A 版数学必修第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明) 归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。二、学生学习情况分析:任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难

2、。三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。四、教学目标通过直观感知观察操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、

3、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。六、教学过程设计(一)知识准备、新课引入提问 1:根据公共点的情况,空间中直线 a 和平面 有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为 a提问 2:根据直线与平面平行的定义( 没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并

4、指出是否有别的判定途径。设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。(二)判定定理的探求过程1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?生 1:例举日光灯与天花板,树立的电线杆与墙面。生 2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示) ,然后教师用多媒体动画演示。学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。2、动手实践教师取出预先准备好的直角梯形泡沫板演示

5、:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师( 视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。3、探究思考(1)上述演示的直线与平面位

6、置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:平面外一条线 平面内一条直线 这两条直线平行(2)如果平面外的直线 a 与平面 内的一条直线 b 平行,那么直线 a 与平面平行吗?4、归纳确认:(多媒体幻灯片演示)直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。简单概括:(内外)线线平行 线面平行符号表示: |ab温馨提示:作用:判定或证明线面平行。关键:在平面内找(或作)出一条直线与面外的直线平行。思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:(1)判断下列命题的

7、真假?说明理由:如果一条直线不在平面内,则这条直线就与平面平行( )过直线外一点可以作无数个平面与这条直线平行( )一直线上有二个点到平面的距离相等,则这条直线与平面平行( )(2)若直线 a 与平面 内无数条直线平行,则 a 与 的位置关系是( )A、a | B、a C、a | 或 a D、a学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要

8、求生成正确的结果则就由个别学生进行演示。2、作一作:设 a、b 是二异面直线,则过 a、b 外一点 p 且与 a、b 都平行的平面存在吗?若存在请画出平面,不存在说明理由?先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。3、证一证:例 1(见课本 60 页例 1):已知空间四边形 ABCD 中,E、F 分别是 AB、AD 的中点,求证:EF | 平面 BCD。变式一:空间四边形 ABCD 中,E、F、G、H 分

9、别是边 AB、BC、CD、DA 中点,连结 EF、FG、GH、HE、AC 、BD 请分别找出图中满足线面平行位置关系的所有情况。(共 6 组线面平行)变式二:在变式一的图中如作 PQ EF,使 P 点在线段 AE 上、Q 点在线段 FCA上,连结 PH、QG,并继续探究图中所具有的线面平行位置关系? (在变式一的基础上增加了 4 组线面平行) ,并判断四边形 EFGH、 PQGH 分别是怎样的四边形,说明理由。设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。例 2:如图,在正方体 ABCDA1B1C1D1 中,E 、F 分别

10、是棱 BC 与 C1D1 中点,求证:EF | 平面 BDD1B1C1D1B1A1CDA BFE分析:根据判定定理必须在平面 BDD1B1 内找(作) 一条线与 EF 平行,联想到中点问题找中点解决的方法,可以取 BD 或 B1D1 中点而证之。思路一:取 BD 中点 G 连 D1G、EG,可证 D1GEF 为平行四边形。思路二:取 D1B1 中点 H 连 HB、HF ,可证 HFEB 为平行四边形。知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培

11、养逻辑思维能力的重要思想方法4、练一练:练习 1:见课本 6 页练习 1、2练习 2:将两个全等的正方形 ABCD 和 ABEF 拼在一起,设 M、N 分别为AC、 BF 中点,求证: MN | 平面 BCE。变式:若将练习 2 中 M、 N 改为 AC、BF 分点且 AM = FN,试问结论仍成立吗?试证之。设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习 2 及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。(四)总结先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):1、线面平行的判定定理:

12、平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。2、定理的符号表示: |ab简述:(内外)线线平行则线面平行3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。七、教学反思本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。本节课的设计遵循“直观感知操作确认思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、

13、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,

14、如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。福建省宁德第一中学 叶洪康点评本节课教师利用教室现有实物,如日光灯管、地面、教师个人、门等做教具,让学生认识和理解直线和平面平行的理由和条件。学生在应用观察、猜想等

15、手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心。学生经过思维活动,从中找出一类事物的本质属性,最后通过概括得出新的数学概念。创设的问题情景有效,能遵循认识规律,从感性到理性,从具体到抽象。本节课的设计符合新课程立几中“直观感知操作确认思辩论证”的教学理念。整体设计中规中矩,自然流畅。教师对问题、例题的设计都别具匠心,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。本节课蕴涵着化归思想,设计中注重对学生进行思想方法的训练,通过一题多解、一题多变,渗透了联系与转化的思想,使学生学会思考、掌握方法,有利于培养学生思维的广阔性

16、与深刻性。11、循环结构一、教学内容分析循环结构是人民教育出版社课程教材研究所编著的普通高中课程标准试验教科书数学 3(必修) (A 版)中1。1。2 的第二课时的内容。 (1)算法是高中数学课程中的新内容,算法的思想是非常重要的,算法思想已逐渐成为每个现代人所必须具备的数学素养。 (2)本节课的内容是循环结构,它与顺序结构、条件分支结构是算法的三种基本逻辑结构,可以表示任何一个算法。并且循环结构是算法这一部分的重点和难点,它的重要性就是充分体现计算机的优势,也即能以极快的速度进行重复计算。二、学生学习情况分析学生已经学习了有关算法和框图的基础知识。绝大多数同学对算法和框图的学习有相当的兴趣和

17、积极性。但在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强。三、设计思想建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构。基于以上理论,本节课遵循引导发现,循序渐进的思路,采用问题探究式教学,运用多

18、媒体,投影仪辅助,倡导“自主、合作、探究”的学习方式。具体流程如下:创设情景(课前准备、引入实例)授新设疑(自主探索形成概念理解概念能识别框图)质疑问难、论争辩难(进一步加深对概念的理解突破难点)沟通发展(反馈练习归纳小结)布置作业。四、教学目标理解循环结构,能识别和理解简单的框图的功能,通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力;能运用循环结构设计程序框图解决简单的问题,感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。五、教学重点与难点重点:理解循环结构,能识别和画出简单的循环结构框图。难点:循环结

19、构中循环条件和循环体的确定。六、教学过程设计(一)创设情境引例:德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 123499100?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。 (课本例 6)你能否写出求 的值的一个算法,并用框图表示你的算法。此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解。【设计意图】通过高斯求和的故事,复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。(二)授新设疑1循序渐进,理解知识(1)引进“计数变量” 、 “累加变量” 。借助

20、“计数变量”和 “累加变量”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件 3 个构造循环结构的关键步骤。将“递推求和”转化为“循环求和”的缘由及转化的方法和途径引例“求 的值”这个问题的自然求和过程可以表示为:123102431, (2,310)iiSSSi 用递推公式表示为: 1(2,0)ii直接利用这个递推公式构造算法在步骤 中使用了 共 1001iiS12310,S个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤中提取出共同的结构,即第 步的结果第

21、( 1)步的结果 。若1iiSiii引进一个计数变量 来表示计算到第几步,一个累加变量 来表示每一步的计i sum算结果,则第 步可以表示为赋值过程 。1,isi“ ”、 “ ”的含义isum利用多媒体动画展示计算机中计数器的工作原理,借助形象直观对知识点进行强调说明1) 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。i1ii2)赋值号“”右边的变量“ ”表示前一步累加所得的和,赋值号“=”i左边的“ ”表示该步累加所得的和,含义不同。i3)赋值号“”与数学中的等号意义不同。 在数学中是不成立的。i4) 的作用是将赋值号右边表达式 的值赋给赋值号左边的sumisumi变量 。 (类比

22、 理解)1借助“计数变量” 、 “累加变量”既突破了难点,同时也使学生理解了“”、 “ ”的含义。1isi初始化变量,设置循环终止条件由 的初始值为 0, 的值由 1 增加到 100,可以初始化循环变量和设置循umi环终止条件。(2)循环结构的概念开始i=1sum=0i=i+1sum=sum+ii100?结束输出 sum是否循环变量初始化循环体循环条件从某处开始,按照一定条件,反复执行某一处理步骤的结构称为循环结构。教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念(循环变量、循环体、循环终止的条件)。【设计意图】这样讲解既突出了重点又突破了难点,同时学生在教师引导下

23、,在已有探索经验的基础上,借助多媒体的形象直观,共同完成问题的抽象过程和算法的构建过程。体现研究问题常用的“由特殊到一般”的思维方式。2类比探究,掌握知识例 1:改造引例的程序框图表示求 的值4610求 的值235求 的值1此例可由学生独立思考、回答,师生共同点评完成。【设计意图】通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点: 确定循环变量和初始值 确定循环体 确定循环终止条件。例 2:根据程序框图回答下面的问题开始i=1sum=0i=i+1sum=sum+ii5?结束输出 sum是否开始i=1sum=0sum=sum+ii=i+1i5?结束是否

24、输出 sum图 A 图 B(1) 图中箭头指向时,输出 _;指向时输出 _。sumsum(2)该程序框图的算法功能是_。(3)去掉条件“ ”按程序框图所蕴含的算法,能执行到底吗,若能执5i行到底,最后输出的结果是什么?对比练习:(1)图 B 输出 _。sum(2)图 A 指向时与图 B 有何不同?你能得到什么结论?(3)对比“引例”与“例 2”的程序框图,试说明二者的区别和联系?可由学生小组讨论,教师巡视,加强对学生的个别指导,再由学生分析。例 2 是写出程序框图的运算结果,及其功能。【设计意图】设计此例的目的是让学生通过类比意识到:循环结构不能是永无终止的死循环,一定要在某个条件下终止循环,

25、这就需要条件结构来做出判断,因此,循环结构一定包含条件结构。循环结构中语句的顺序对算法的影响。当型循环结构与直到型循环结构的区别。(三)质疑问难、论争辩难例 3 图(1) ,图(2) ,图(3) ,图(4)是为计算而绘制的程序框图。根据程序框图回答下面的问题:开始i=42s=22i=i+1s=s+ii100?结束输出 s是否开始i=4s=22s=s+ii100?结束输出 s是否图(1) 图(2)开始i=2s=0i=i+1s=s+i2i100?结束输出 s是否开始i=4s=22i=i+1s=s+i2i100?结束是否输出 s图(3) 图(4)其中正确的程序框图有哪几个?错误的要指出错在哪里。错误

26、的程序框图中,按该程序框图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?根据上面的回答总结出应用循环结构编制程序框图应该注意哪几方面的问题?【设计意图】通过类比,自主探究,帮助学生深入理解知识,完善知识结构,提升认知水平。通过小组讨论,实现生生互动,师生互助,丰富情感体验,活跃课堂气氛。(四)沟通发展、归纳小结1沟通发展仿照本节课例题,同桌俩人一人编题一人解答。【设计意图】通过练习进一步巩固所学知识,培养和提升学生的认知水平。沟通发展,有助于及时查漏补缺,保持学生学习的热情和信心。2课后小节理解循环结构的逻辑。明确条件结构与循环结构的区别,联系。当型循环结构与直到型循环结构的

27、区别。数学思想方法:算法思想,类比方法。【设计意图】通过小结使学生对本节课的知识有一个全面的认识,掌握知识。为今后学习其它知识打基础。(五)布置作业课本 P11 习题 11 A 组 2课外拓展:写出一个求满足 123n5000 的最小正整数的算法并画出相应的程序框图。【设计意图】书面作业第一个层次要求所有学生完成,第二个层次,只要求学有余力的同学完成。体现了差异发展教学。七、教学反思循环结构这部分内容在算法中起着承上启下的作用。本节施教过程中,基本完成设计构思,教学效果良好,但仍发现一些不足之处:1、学生对循环终止条件的确定还存在一定困难,尤其循环体中“ ”、 “ ”的顺序对终止条件的影响。i

28、sumi2、教学过程中对循环体“ ”、 “ ”中滲透的函1isumi数思想(数学本质)体现不够。对算法教学的思考:教材将“算法与程序框图”和“基本算法语句”分开处理。是否将这两部分内容结合起来处理,在讲基本结构的时候,通过基本算法语句在计算机上演示计算结果,是否会更生动,效果会更好。强调基本结构,适当降低程序框图和算法语句的难度(学生反映其中的一些例题结构太复杂,理解比较吃力) 。算法作为数学与计算机技术的桥梁,体现了数学研究的一个新的方向,其作用是勿庸质疑的,但作为高中数学课程中的新内容,如何将其更完美地展现给学生,还需大家共同努力!龙岩第一中学章杨点评本节是概念课,是算法初步这一章节的重点

29、与难点。概念的建构应该是多元的,但无论采用何种方式建构新的知识,都要关注课堂上一些显现因素和课堂教学的内在因素,以教材为“生长点” ,在师生、生生互动中,不断创造出新的教学资源,使师生的思维和情感在和谐的“共振”中得到升华,让学生对学习保持良好、积极的情感体验,提升求知欲、探索欲。本设计以循环结构的典型模型“写出求的值的一个算法”作为引入,并以它为核心进行剖析,12310表达概念的含义,从中抽象出循环结构的概念。设计中能够紧紧围绕如何确定循环变量和初始值及如何确定循环终止条件,通过变式训练、正反例判断,抓住重点,突破难点。循环结构是三种结构中的一种结构,教材中只安排了一个例题“设计一个计算 的

30、值的一个算法,并画出程序框图” 。12310设计中能够充分发挥例题的功能,通过例题讲清概念,通过例题的引伸,让学生掌握本节知识。当型与直到型的两种循环结构是本节课的重要知识点,教学中要讲清两种结构的异同点。设计中已经注意到了这一点,但重视的程度还略显不够。12、任意角的三角函数(1)一、教学内容分析:高一年普通高中课程标准教科书数学(必修 4) (人教版 A 版)第 12页 1.2.1 任意角的三角函数第一课时。本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在课程标准中:三角函数是基本初等

31、函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。 课程标准还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。二、学生学习情况分析我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣。我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。所以如何进行普通高中数学课程标准(实验)(以下简

32、称课程标准)的教学设计就很值得思考探索。如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?普通高中数学课程标准(实验)解读中在三角函数的教学中,教师应该关注以下两点:第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象) ,解决一些实际问题,这也是课程标准在三角函内容处理上的一个突出特点。根据课程

33、标准的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:其一:能从实际问题中识别并建立起三角函数的模型;其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。三、设计理念:本节课通过多媒体信息技术展示摩天轮旋转及生成的图像,让学生感受到数学来源于生活,数学应用于生活,激发同学们学习的乐趣。并通过问题的探究,体验“数学是过程的思想” ,改变课程实施过程于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与,乐于探究,勤于动手,培养学生学生收集和处理信息的能力,获得新知识的能力,分析与解决问题的能力以及交流合作的能力。四、教学目标:1.借助摩天轮的情景问题很好地融合初

34、中对三角函数的定义,也能很好入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义;2.从任意角的三角函数的定义认识其定义域、函数值的符号;3.能初步应用定义分析和解决与三角函数值有关的一些简单问题。五、教学重点和难点:1.教学重点:任意角三角函数的定义.2.教学难点:正弦、余弦、正切函数的定义域.具体设计如下:六、教学过程第一部分情景引入问题 1:如图是一个摩天轮,假设它的中心离地面的高度为 ,它的直径为 2R,逆时针方向匀速转动,转动一周需要oh360 秒,若现在你坐在座舱中,从初始位置 O

35、A 出发(如图 1所示) ,过了 30 秒后,你离地面的高度 为多少?过了 45 秒呢?过了 秒呢?ht【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解。这个数学模型很好融合初中对三角函数的定交,也能放在直角坐标系中,很好地将锐角三角函数的定义向任意角三角函数过渡,揭示函数的本质。第二部分复习回顾锐角三角函数让学生自主思考如何解决问题:“过了 30 秒后,你离地面的高度为多少?O AP图1 ”【分析】:作图如图 2 很容易知道:从起始位置 OA 运动 30 秒后到达 P 点位置,由题意知

36、,作 PH 垂03AOP直地面交 OA 于 M,又知 MH ,所以本问题转变成求 PHoh再次转变为求 PM。要求 PM 就是回到初中所学的解直角三角形的问题即锐角的三角函数。问题 2:锐角 的正弦函数如何定义?【学生自主探究】:学生很容易得到 RMPO|sinsin|i|0hPHsn所以学生很自然得到“过了 30 秒后,过了 45 秒,你离地面的高度 为多少? ”h0013sinR245【教师总结】: 在锐角的范围中,0t00sintRh第三部分引入新课问题 3:请问 的范围呢?随着时间的推移,你t离地面的高度 为多少?能不能猜想 ?h00sintRh【分析】:若想做到这一点,就得把锐角的正

37、弦推广到任意角的正弦。今天我们就要来学习任意角的三函数角函数。问题 4:如图建立直角坐标系,设点 ,能你用直角坐标系中角的终),(Pyx边上的点的坐标来表示锐角 的正弦函数的定义吗?能否也定义其它函数(余弦、正切)?aO MPYXO APBMO APHB NM图2 【学生自主探究】: |sinOPMRy,RxOP|cosPx|ta问题 5:改变终边上的点的位置,这三个比值会改变吗?为什么?【分析】:先由学生回答问题,教师再引导学生选几个点,计算比值,获得具体认识,并由相似三角形的性质证明。【设计意图】:让学生深刻理解体会三角函数值不会随着终边上的点的位置的改变而改变,只与角有关系。通过摩天轮的

38、演示,让学生感受到第一象限角的正弦可以跟锐角正弦的定义一样。问题 6:大家根据第一象限角的正弦函数的定义,能否也给出第二象限角的定义呢?【学生自主探究】:学生通过上面已知知识得到 |sinOPMRy学生定义好第二象限角后,让学生自己算出摩天轮座舱在第 150 秒时,离地面的高度 ?h通过摩天轮知道: 0015sinRh0013sinRh由此得到: 215【设计意图】:通过这个,让学生检验 在第二象限角是否|sinOPMRy正确?问题 7: 在第三象限角或第四象限能成立吗?|sinOPM【设计意图】:让学生通过模型,检验定义是否正确,从中让学生自己发现OPxy图3正、负符号的偏差。(可以让学生取

39、 ,从而 得到 ,发现210t ,210sin0Rh021sin这与 不相符,实际上是 )|sinOPM|iOPM【教师总结】:我们通过个模型知道如何在某些范围内如何计算自已此时离地面的高度,用数学模型 来表示,当摩天轮转动,角度的概念也00sintRh不知不觉地推广到任意角,对于任意角的正弦不能只是依赖于角所在的直角三角形中的对边的长度比斜边长度了,我更应该用点 P 的横坐标来代替 或|MP,那么这样就能够很好表示出正弦的函数任意角的定义。|MP第三部分给出任意角三角函数的定义如图 3,已知点 为角 终边上的点,点 到顶点 的距离为 R,则),(yxO( )Rysin( )co( )xyta

40、k2【分析】:让学生通过刚才的模型进一步体验任意角三角函数的定义要点:点、点的坐标、点到顶点的距离。问题 8:当摩天轮的半径 R1 时,三角函数的定义会发生怎样的变化。【学生自主探究】: , , 。ysinxcosxytan教师引导学生进行对比,学生通过对比发现取到原点的距离为 1 的点可以使表达式简化。教师进一步给出单位圆的定义给出下列表格,让学生自己补充完整。三角函数 定义一: 1|OP定义二: ROP|定义域sinyycoxRxtanyyk2及时归纳总结有利学生对所学知识的巩固和掌握。第三部分例题讲解例 1.(课本 P14 例 2)已知角 终边经过点 ,求角 的正弦、余弦)4,3(0P和

41、正切值。【分析】:让学生现学现卖,得用上面的定义二就可以得到答案。例 2.(课本 P14 例 1)求 的正弦、余弦和正切值。35【学生自主探究】:让学生自己思考并独立完成。然后与课本的解答相对比一下,发现本题的难点。【教师讲解】:本题题意很简单,但是如何入手却是难点,关键是对本节课的三角函数定义的要点有没有领会清楚(任意角三角函数的定义要点:点、点的坐标、点到顶点的距离) ,因此本题的重点之处是如何利用单位圆找到这个点 P,如图 4 可以知道 ,又点 P 在第四象限,得到3POM,这样就可以很容易得到本题答案。)2,1(不妨让学生取 ,能否也得到点 P 的4|PR坐标,得到的三角函数值是否与单

42、位圆的一样。这样可以让学生更深刻体验三角函数的定义。第四部分巩固练习练习 1.例 2 变式求 的正弦、余弦和正切值。67练习 2.问题 9:通过观察摩天轮的旋转,三角函数的角的终边所在象限不同,请说说三角函数在各个象限内的三角函数值的符号?独立完成课本 P15 的“探究” 。【设计意图】:练习 1、练习 2 的设计与例 2、例 3 衔接,主要目的是帮助学生巩固三角函数的本质特征,引导学生从定义出发利用坐标平面内的点的坐标特征自主探究三角函数的有关问题的思想方法。并在特殊情形中体会数形结合的思想方法。第五部分小结与作业学生自我总结作业:P23 习题 1.2A 组 1,2,3OPM xy图4七、教

43、学反思上述教学设计及具体教学实施过程我认为有以下几点意义:1. 教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设是学生熟悉的摩天轮,认知过程符合学生的认知特点和学生的身心发展规律具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。2. 情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。3. 通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法

44、和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。4. 标准把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略, 使

45、学生认识到数学原来就来自身边的现实世界, 是认识和解决我们生活和工作中问题的有力武器, 同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。南安侨光中学 苏飞文点评本节课以新颖背景“摩天轮”引课,从直角三角形的锐角入手,引导学生尝试探究,逐次深入引出任意角的三角函数的定义,以问题形式巩固深化任意角三角函数值的计算,结合平位图直观作用,使学生经历了由浅入深,由易到难,清楚展现了任意角三角函数的生成过程,加深了对任意角三角函数的认识。新课程教材强调了学生的探究能力的培养,但不意味着每个知识点都需要人为创设情景加以探究,现实的教学由于受教学时数限制,总是希望课堂教学效率

46、高些,任意角的三角函数的定义是否一定要创设情景让学生探究?只要让学生理解有必要引入任意角三角函数概念,然后直接下定义,从课堂教学效率而言,可能会更好些。13、任意角的三角函数(2)一、教学内容分析本节课的教学内容是普通高中课程标准实验教科书数学(4) (人教 A版) 。三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、同角三角函数关系、多组诱导公式、图象和性质。三角函数定义必然是学好全章内容的关键,如果学生掌握不

47、好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.二、学生学习情况分析在初中学生学习过锐角三角函数。因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。三、设计思想教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,

48、本节课采用“启发探索、讲练结合”的方法组织教学.四、教学目标1掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号) ;2、理解任意角的三角函数不同的定义方法;掌握并能初步运用公式一;树立映射观点,正确理解三角函数是以实数为自变量的函数.3、通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.借助有向线段进一步认识三角函数. 4、通过任意三角函数的定义,认识锐角三角函数是任意三角函数的一种特例,加深特殊与一般关系的理解。5、通过三角函数的几何表示,使学生进一步加深对数形结合思想的理解,拓展思维空间。通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。五、教学重点和难点重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号) ;终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号) ;六、教学过程设计教学过程一、复习引入、回想再认(情景

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报