1、第五章 静 电 场5 1 电荷面密度均为的两块 “无限大”均匀带电的平行平板如图 (A)放置,其周围空间各点电场强度E(设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为 ,方向沿带电02平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲
2、面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域
3、内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩 p 水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p 水
4、平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩 p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 5 精密实验表明,电子与质子电量差值的最大范围不会超过10 21 e,而中子电量与零差值的最大范围也不会超过10 21 e,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况,
5、假设电子与质子电量差值的最大范围为210 21 e,中子电量为10 21 e,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为 eq21max081二个氧原子间的库仑力与万有引力之比为 .4620axGFge显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在1021 e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.5 6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带 的下夸克构成.若将
6、夸克作为经典32e31粒子处理(夸克线度约为10 20 m),中子内的两个下夸克之间相距2.601015 m .求它们之间的相互作用力 .解 由于夸克可视为经典点电荷,由库仑定律 rrreq eFN78.341412020F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 7 质量为m,电荷为 e 的电子以圆轨道绕氢核旋转,其动能为 E .证明电子的旋转频率满足 4320meEkv其中 0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10 15 m,轨道半径约为10 10 m,故电子、氢核都可视作点电荷 .点电荷间的库仑引力是
7、维持电子沿圆轨道运动的向心力,故有20241remv由此出发命题可证.证 由上述分析可得电子的动能为 reEK20281v电子旋转角速度为 30224mre由上述两式消去r,得 43202eEKv5 8 在氯化铯晶体中,一价氯离子Cl 与其最邻近的八个一价铯离子Cs+构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与
8、氯离子间的作用合力为零,故F 1 0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为 N1092.340201aerqFF2 方向如图所示.5 9 若电荷Q 均匀地分布在长为 L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为204rQE(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 20421Lr若棒为无限长(即L),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,
9、在长直线上任意取一线元dx,其电荷为dq Qdx/L,它在点P 的电场强度为rqeE20d41整个带电体在点P 的电场强度 d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, LEid(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 Lyjjdsind证 (1) 延长线上一点P 的电场强度 ,利用几何关系 rqE20rr x统一积分变量,则 200220 412/14d4 LrQLrrLQxrLE/-P 电场强度的方向沿x 轴.(2) 根据以上分析,
10、中垂线上一点P 的电场强度E 的方向沿y 轴,大小为rqLd4sin20利用几何关系 sin r/r, 统一积分变量,则x203/220 4141LrQrEL/- 当棒长L时,若棒单位长度所带电荷为常量,则P 点电场强度rLrQEl022 /41im此结果与无限长带电直线周围的电场强度分布相同图(B).这说明只要满足r 2/L2 1,带电长直细棒可视为无限长带电直线.5 10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 3 节的例1 可以看出,所有
11、平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为RSqdsin2diE3/20d41rxq由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系, 统一积分变量,有Rxcosrsin RrxqEdcosin2 dsin2cos4141d0 303/2积分得 02/04csiE5 11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型
12、等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2.叠加后水分子的电偶极矩大小为 ,方0erP erPcos20向沿对称轴线,如图所示.由于点O 到场点A 的距离x r0 ,利用教材第5 3 节中电偶极子在延长线上的电场强度 30241pE可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩 在电偶极矩延长线上erPcoss00 303030 14124xxxpE解2 在对称轴线上任取一点A ,则该点的电场强度E20204coscos2xereE由于 xr2rcscs0代入得 23/020 1cos4xxreE测量分子的电场时, 总有x r 0 , 因此, 式中
13、,将 xrx cos211cos2 03/23/20上式化简并略去微小量后,得 30cosxerE5 12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x);(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F qE ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F E.应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自
14、身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E 、E 分别表示正、负带电导线在P 点的电场强度,则有 iixrxr00212(2) 设F 、F 分别表示正、负带电导线单位长度所受的电场力,则有 iE02riEF02r显然有F F ,相互作用力大小相等,方向相反,两导线相互吸引 .5 13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z d).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得 kkkE202020 4141dzqdzqzq 考虑到z d,简
15、化上式得 k k420 220206 .31.31/4zqd zdzdzq 通常将Q 2qd 2 称作电四极矩,代入得 P 点的电场强度 kE4031zQ5 14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即dsE方法2:作半径为R 的平面S与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 01d0qSE这表明穿过闭合曲面的净通量为零,穿入平面S的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而 SSd解1 由于闭合曲面内无电荷分布,根据高斯定理,有 SSE依照约定
16、取闭合曲面的外法线方向为面元dS 的方向, R22cos解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为 rEeeesinincosrRSdd2ERSS2002dsiniid5 15 边长为a 的立方体如图所示,其表面分别平行于Oxy、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度(k,E 1 ,E 2 为常数)的非均匀电场中,求电场对立12Ekx=i+j方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即 .而0DEFGOABC221ABGFdadSkx jiSE
17、考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有 2EABGFCDEO同理 211AOEFdadSijiS2BCDG kka因此,整个立方体表面的电场强度通量 35 16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为 ,方向指向地面.试1mV20求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地
18、球表面同心的球面为高斯面,其半径( 为地球平均半径).由高斯定理ER qRE0214dS地球表面电荷面密度 2902 cm16./qE单位面积额外电子数 253./en5 17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为 Rrk 0k为一常量.试分别用高斯定理和电场叠加原理求电场强度E与r的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有 2S4drE根据高斯定理 ,可解得电场强度的分布.V1d0E(2) 利用带电球壳
19、电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为 ,每个带电球壳在壳rqd42内激发的电场 ,而在球壳外激发的电场dreE20d由电场叠加可解得带电球体内外的电场分布 RrrRr d0E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理 得球体内(0rR)V10S40022d44rkkrErre02球体外(r R) 40022d414rkkrrERre02解2 将带电球分割成球壳,球壳带电 rkVqd4d2由上述分析,球体内(0rR)rrr kkeE0220 4d41球体外(r R) rrRkRrkr e2020 4d415 18
20、一无限大均匀带电薄平板,电荷面密度为,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和.解 由教材中第5 4 节例4 可知,在无限大带电平面附近 neE012为沿平面外法线的单
21、位矢量;圆盘激发的电场ne nrxe202它们的合电场强度为nrxeE2021在圆孔中心处x 0,则E 0在距离圆孔较远时x r,则 nnxree022/1上述结果表明,在x r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 19 在电荷体密度为 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为 aE03分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为 的均匀带电球
22、和一个电荷体密度为、球心在O 的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 EE 1 E 2 .证 带电球体内部一点的电场强度为 r03所以 ,E01202210213r根据几何关系 ,上式可改写为ar21 aE035 20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场
23、强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷24drES后,利用高斯定理 即可求出电场强度的分布.q0/q解 取半径为r 的同心球面为高斯面,由上述分析 02/4qrEr R 1 ,该高斯面内无电荷, ,故 1R1 r R 2 ,高斯面内电荷 312RQ故 2312024rER2 r R 3 ,高斯面内电荷为Q 1 ,故 203rQr R 3 ,高斯面内电荷为Q 1 Q 2 ,故 2014rE电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r R 3 的带电球面两侧
24、,电场强度的跃变量 02334RQE这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时, E 的变化就变陡,最后当厚度趋于零时,E的变化成为一跃变.5 21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 R 1 ),单位长度上的电荷为.求离轴线为r 处的电场强度:(1) r R 1 ,(2) R 1 r R 2 ,(3) r R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且
25、,求出不同半径高斯面内的电荷 .即可解得各区域rLEd2Sq电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理 0/2rLEr R 1 , 0q1在带电面附近,电场强度大小不连续,电场强度有一跃变R1 r R 2 , LrE0r R 2, q3在带电面附近,电场强度大小不连续,电场强度有一跃变002rLE这与5 20 题分析讨论的结果一致.5 22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 Q 3 Q.已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功 .分析 由库仑力的定义,根据Q 1 、Q 3
26、 所受合力为零可求得 Q2 .外力作功W应等于电场力作功W 的负值,即WW .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为 lEd02其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有 0202VQ其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零 24031201 dd解得 Q32由点电荷电场的叠加,Q 1 、 Q3 激发的电场在y 轴上任意一点的电场强度为 2/32031ydEy将Q 2 从点O 沿y 轴移到无穷远处, (沿其他路径所作的功相同,请想一想为什么?)外力所作的
27、功为 dQydQWy022/320002 841dlE解2 与解1相同,在任一点电荷所受合力均为零时 ,并由电势412的叠加得Q 1 、Q 3 在点O 的电势 ddV003014将Q 2 从点O 推到无穷远处的过程中,外力作功 dQW0228比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 23 已知均匀带电长直线附近的电场强度近似为 reE02为电荷线密度.(1)求在r r 1 和r r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.
28、解 (1) 由于电场力作功与路径无关,若沿径向积分,则有 12012lndrUrE(2) 不能.严格地讲,电场强度 只适用于无限长的均匀带电直re0线,而此时电荷分布在无限空间,r处的电势应与直线上的电势相等.5 24 水分子的电偶极矩p 的大小为6.20 10 30 C m.求在下述情况下,距离分子为r 5.00 10 9 m 处的电势.(1) ;(2) 0;(3) , 为r 与p 之间的夹角.40解 由点电荷电势的叠加 2000P 4cos4rpqrV(1) 若 o0123.0Pp(2) 若 o45V058.4cos320PrV(3) 若 o90920oPp5 25 一个球形雨滴半径为0.
29、40 mm,带有电量1.6 pC,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 RqV041当两个球形雨滴合并为一个较大雨滴后,半径增大为 ,代入上式后可32以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 0.40 mm,带有电量q 1 1.6 pC ,可以求得带电球形雨滴表面电势 V364101RV当两个球形雨滴合并为一个较大雨滴后,雨滴半径 ,带有电量132Rq2 2q 1 ,雨滴表面电势 57241302RqV5 26 电荷面密度分别为
30、和 的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度 ,叠加求得电场强度i02的分布, ax 0 2 iE电势等于移动单位正电荷到零电势点电场力所作的功 Vx d00l ax 0a-axlElV d00a-axll电势变化曲线如图(b)所示.5 27 两个同心球面的半径分别为
31、R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带pVlEd电的球面,在球面外产生的电势为 rQV04在球面内电场强度为零,电势处处相等,等于球面的电势 R04其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (
32、1) 由高斯定理可求得电场分布 22013121 4 0RrQreE由电势 可求得各区域的电势分布.rVld当rR 1 时,有 2010 2011 324dd211RQVRRRrlEllE当R 1 rR 2 时,有 20012013224d2RQrVRrlEl当rR 2 时,有 rVr02133dlE(2) 两个球面间的电势差 2102124d1 RQURl解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即rR 1 ,则 201014RV若该点位于两个球面之间,即R 1 rR 2 ,则 20024Q若该点位于两个球面之外,即rR 2 ,则 rV02134(2) 两个球面间的
33、电势差 20101212 4RQVURr5 28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 Vd10SE可求得电场分布E(r),再根据电势差的定义 lbaar并取棒表面为零电势(V b 0),即可得空间任意点a 的电势.解 取高度为l、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当rR 时 02/lrE得 0当rR 时 02/lRrE得 rRE02取棒表面为零电势,空间电势的分布有当rR 时 2004d2
34、rRrrVR当rR 时 rrrRln2d00如图所示是电势V 随空间位置r 的分布曲线.5 29 一圆盘半径R 3.00 10 2 m.圆盘均匀带电,电荷面密度 2.00105 Cm2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势 20d41dxrV由电势叠
35、加,轴线上任一点P 的电势的(1)xRxrVR2002d2(2) 轴线上任一点的电场强度为(2)iiE2012dxx电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x 30.0 cm 分别代入式(1)和式(2),得 V169-1m507E当xR 时,圆盘也可以视为点电荷,其电荷为.依照点电荷电场中电势和电场强度的计算公式,C1065.82q有 V169540xqV1-20mE由此可见,当xR 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3和0.8,这已足以满足一般的测量精度.5 30 两个很长的共轴圆柱面(R 1 3.
36、010 2 m,R 2 0.10 m),带有等量异号的电荷,两者的电势差为450 .求:(1) 圆柱面单位长度上带有多少电荷?(2) r 0.05 m 处的电场强度.解 (1) 由习题5 21 的结果,可得两圆柱面之间的电场强度为 rE02根据电势差的定义有120212lnd1 RURlE解得 8120 mC.l/(2) 解得两圆柱面之间r 0.05m 处的电场强度 10V7452rE5 31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(粒子)时,可释放出25.9MeV 的能量.即 M
37、eV25.9He40121这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子( )以多大的动能(以电1子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 10 15 m)分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 reV04将质子作为经典粒子处理,当另一质子从无穷远处以动能E k飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能 RereVE24102RK0假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知: