收藏 分享(赏)

网络工程师全面复习笔记_网络与通信.doc

上传人:dreamzhangning 文档编号:2769988 上传时间:2018-09-27 格式:DOC 页数:24 大小:154KB
下载 相关 举报
网络工程师全面复习笔记_网络与通信.doc_第1页
第1页 / 共24页
网络工程师全面复习笔记_网络与通信.doc_第2页
第2页 / 共24页
网络工程师全面复习笔记_网络与通信.doc_第3页
第3页 / 共24页
网络工程师全面复习笔记_网络与通信.doc_第4页
第4页 / 共24页
网络工程师全面复习笔记_网络与通信.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、网络与通信串讲第 1 章 引论本章介绍了计算机网络的发展历史和计算机网络的功能及组成,计算机网络协议体系结构的基本概念。本章重点是掌握计算机网络的分类及数据通讯模型,理解网络协议和协议体系结构的概念。本章的考核要求为“识记”层次。1、计算机网络的产生和发展过程第一代:以单计算机为中心的联机系统。缺点:主机负荷较重;通信线路的利用率低;网络结构属集中控制方式,可靠性低。第二代:计算机计算机网络。以远程大规模互联为主要特点,由 ARPANET 发展和演化而来。ARPANET 的主要特点:资源共享、分散控制、分组交换、采用专门的通信控制处理机、分层的网络协议。这些特点往往被认为是现代计算机网络的典型

2、特征。第三代:遵循网络体系结构标准建成的网络。依据标准化水平可分为两个阶段:各计算机制造厂商网络结构标准化、国际网络体系结构标准-ISO/OSI。2、计算机网络的概念计算机网络 是指通过数据通信系统把地理上分散的计算机有机地连起来,以达到数据通信和资源共享的目的的系统。计算机网络和终端分时系统的区别:a、终端分时系统的结构是有一台主机和多个终端组成,各个终端不具备单独的数据处理能力。而计算机网络是由多台主机互联,共享一个或多个大容量存储器,可共享这些大容量存储器上的软件和数据资源,也可共享其他主机的外围设备等。b、由于终端数目增加,终端分时系统的计算速度将会显著降低。计算机网络增加工作节点,除

3、增加通信线路外,其速度保持不变。c、终端分时系统中全部资源集中在主机中,各个终端用户共享中心计算机资源。计算机网络中每个用户除占有本身的资源外,并能共享网络中全部公共资源。d、终端分时系统属于集中控制,可靠性低。计算机网络采用分布式控制方式,有较高的可靠性。计算机网络和分布式系统的区别:计算机网络和分布式系统在计算机硬件连接、系统拓扑结构和通信控制等方面基本一样。两种系统的差别仅在组成系统的高层软件上:分布式系统强调多个计算机组成系统的整体性,强调各计算机在分布式计算机操作系统协调下自治工作,用户对各计算机的分工和合作是感觉不到的,系统透明性允许用户按名字请求服务。计算机网络则以共享资源为主要

4、目的,方便用户访问其他计算机所具有的资源,要人为地进行全部网络管理。耦合度:计算机(或处理机)间互连的紧密程度。可用处理机之间的距离及相互连接的信号线数目来说明。局域网为中等耦合度的系统,广域网为松耦合度的系统,多机系统为紧耦合度的系统。3、计算机网络的功能a、数据通信 这是计算机网络的最基本的功能,也是实现其他功能的基础。如电子邮件、传真、远程数据交换等。b、资源共享 计算机网络的主要目的是共享资源。共享的资源有:硬件资源、软件资源、数据资源。其*享数据资源是计算机网络最重要的目的。c、提高可靠性 计算机网络一般都属分布式控制方式,如果有单个部件或少数计算机失效,网络可通过不同路由来访问这些

5、资源。另外,网络中的工作负荷被均匀地分配给网络中的各个计算机系统,当某系统的负荷过重时,网络能自动将该系统中的一部分负荷转移至其他负荷较轻的系统中去处理。d、促进分布式数据处理和分布式数据库的发展 。4、计算机网络系统的组成以资源共享为主要目的的计算机网络从逻辑上可分成两大部分:通信子网和资源子网。通信子网 面向通信控制和通信处理,主要包括:通信控制处理机 CCP,网络控制中心 NCC,分组组装/拆卸设备 PAD,网关 G 等。资源子网 负责全网的面向应用的数据处理,实现网络资源的共享。它由各种拥有资源的用户主机和软件(网络操作系统和网络数据库等)所组成,主要包括:主机 HOST,终端设备 T

6、,网络操作系统,网络数据库。5、计算机网络分类 (领会)按网络拓扑结构分:a、星形结构 每个节点都通过一条单独的通信线路,直接与中心节点连接,各个从节点间不能直接通信。优点:建网容易,控制简单。缺点:属于集中控制,对中心节点依赖性大,可靠性低。线路利用率低,可扩充性差。b、层次结构或树形结构 联网的各计算机按树形或塔形组成,树的每个节点都为计算机。网络的最高层是中央处理机,愈低其处理能力就愈弱。最低层的节点命名为 0 级,次低层为 1 级,顶层的级最高。优点:使为数众多的计算机能共享一条通信线路,以提高线路利用率。增强网络的分布处理能力,以改善网络的可靠性和可扩充性。c、总线形结构 由一条高速

7、公用总线连接若干个节点所形成的网络。其中一个节点是网络服务器,由它提供网络通信及资源共享服务,其他节点是网络工作站。总线形网络采用广播通信方式,因此总线的长度及网络中工作站节点的个数都是有限制的。特点:网络结构简单灵活,可扩充,信道利用率高,传输速率高,网络建造容易。但实时性较差,且总线的任何一点故障都会造成整个网络瘫痪。d、环形结构 由通信线路将各节点连接成一个闭合的环,数据在环上单向流动,网络中用令牌控制来协调各节点的发送,任意两节点都可通信。特点:传输时延确定,网络建造容易,但可靠性差,灵活性差。e、点-点部分连接的不规则形 在广域网中,互联的各个节点不一定直接互联,以任意拓扑结构连接。

8、f、点-点全连接结构 网络中每一节点和网上其他所有节点都有通信线路连接。这种网络的复杂性随处理机数目增加而迅速增长。其他还有按不同角度分类:按距离分为广域网 WAN、局域网 LAN、城域网 MAN;按通信介质分为有线网和无线网;按传播方式分为点对点方式和广播式;按速率分为低、中、高速;按使用范围分为公用网和专用网;按网络控制方式分为集中式和分布式。6、数据通信技术 (领会)数据通信技术是计算机网络的基础,它将计算机与通信技术相结合,完成编码数据的传输,转换存储和处理。1. 信源:产生数据的设备。2. 发送器:一般由信源设备产生的数据不安其产生的原始形式直接传输,而是由发送器 将其进行变换和编码

9、后再送入某种形式的传输系统进行传输。3. 传输系统:连接信源和信宿的传输线路。4. 接收器:从传输系统接收信号并将其转换成信宿设备能够处理的形式。5. 信宿:从接收器上取得传入数据的设备。广域网:覆盖大片的地理区域,一次传输要经由网络中一系列内部互联的交换节点,在通过选择好的路由后到达信宿设备。线路交换: 是从一点到另一点传递信息的最简单的方式。属于预分配电路资源系统,即在一次接续中,电路资源预先分配给一对用户固定使用,不管在这条电路上实际有无数据传输,电路一直被占用,直到双方通信完毕拆除连接为止。优点:信息传输时延小。电路是“透明”的。信息传送的吞吐量大。缺点:所占用的带宽是固定的,所以网络

10、资源的利用率较低。用户在租用数字专线传递数据信息时,要承受较高经济代价。报文分组交换: 是一种存储转发的交换方式。它是将需要传送的信息划分为一定长度的包,也称为分组,以分组为单位进行存储转发的。而每个分组信息都载有接收地址和发送地址的标识,在传送数据分组之前,必须首先建立虚电路,然后依序传送。优点:传输质量好,误码率低。可靠性高。缺点:大量的资源消耗在纠错补偿上。由于采用存储-转发方式工作,因此在传输过程中存在一定的延时。信元交换: ATM(Asynchronous Transfer Mode)异步传送模式。也是一种快速分组技术,它将信息切割成固定长度(53 字节)的信元,以信元为单位进行传送

11、。7、计算机网络协议和协议体系结构在计算机网络中,为使计算机之间或计算机与终端之间能正确的传输信息,必须在有关信息传输顺序、信息格式和信息内容等方面有一组约定或规则,这组约定或规则即是 网络协议 。协议的三要素: 语法、语义、规则 。协议体系结构的思想:用一个构造好的模块集合来完成不同的通信功能。8、一个简化的文件传输协议体系结构协议数据单元(PDU):对等实体之间所传送的数据单元。接口数据单元(IDU):相邻两层实体之间传送的信息单元。服务存取点(SAP):在相邻两层之间实体实现多对多的关系。连接端点(CEP):在对等实体间实现多对多的关系。9、TCP/IP 协议TCP/IP 协议集是以 T

12、CP(Transmission Control Protocol)传输控制协议和 IP(Interconnection Protocol)互连网协议为代表的协议集,它已被广泛地应用于解决计算机网络的互连问题,成为事实上的工业标准。TCP/IP 网络体系分为五个独立的层次。10、OSI/RM 模型(Open System Interconnect/Reference Model)开放式系统互联参考模型。作为计算机通信体系结构的模型由国际标准化组织(ISO)制定的,所又称为 ISO/OSI 网络体系结构。OSI 层次:物理层: 是 ISO/OSI 的最低层。提供物理链路,实现比特流的透明传输。数据

13、链路层: 为穿越物理链路的信息提供可靠的传输手段,为数据(帧)块发送提供必要的同步、差错控制和流控制。数据传输的基本单位是帧。网络层: 为更高层次提供独立于数据传输和交换技术的系统连接,并负责建立、维持和结束连接。传输的基本单位是分组。运输层: 为不同系统的会晤实体建立端-端之间透明、可靠的数据传输,并提供端点间的错误校正和流控制。传输的基本单位是报文。任务层(会晤层): 为应用程序间的通信提供控制结构,包括建立、管理、终止连接(任务)。表示层: 提供应用进程在数据表示(语法)差异上的独立性。应用层: 提供给用户对 OSI 环境的访问和分布式信息服务。应用层以下各层均通过应用层向应用进程提供服

14、务。11、计算机网络与通信标准一类是所谓既成事实的标准。此类标准事先没有作过周密规划。另一类是正式标准。由权威的国际标准化组织制定的。第 2 章 数据通信技术本章介绍了数据通信的一些基本术语和数据传输的原理,及计算机网络中常用的传输介质。重点是掌握数据通信的基本原理及传输介质,理解数据编码及其应用场合。本章的考核要求大部分为“识记”层次。1、数据传输的概念及术语直接连接:两台设备之间传输信道为直接连接的通信形式,在此信道上除了用于增强信号的放大器或中继器外,没有其他的中间器件。频率:单位时间内信号重复的速度。(周/秒或赫兹(Hz)频谱:信号所包括频率的范围。带宽:信号的大部分能量往往包含在频率

15、较窄的一段频带中,这个频带称为有效带宽或带宽。任何数字信号的波形都有无限的带宽。对任何给定的介质,传输带宽越宽,则成本越高。带宽越限制,信号失真越大,接收器出错的概率越高。数据传输速率和带宽的关系: 数据信号传输速率越高,其有效的带宽越宽。同样,传输系统的带宽越宽,该系统能传送的数据传输速率越高。另外,如果信号中心频率越高,潜在带宽就越宽且潜在的数据传输速率越高。2、模拟和数字数据传输 (领会)模拟信号是连续变化的电磁波,不同的频谱可通过不同的介质传播。数字信号是一种电压脉冲序列,通过有线介质传输。模拟数据是时间的函数,且占据有限的频谱,这种数据能用占据相同频谱的电磁信号表现。数字数据可用数字

16、信号表现,通过调制解调器,数字信号能用模拟信号表现。用编码译码器对模拟数据编码产生数字信号,用数字化比特流近似地表示。模拟传输:不关心传送的内容,通过放大器传播,来提高信号的能量。数字传输:关心信号的内容,信号通过中继器传播,在每个中继器从入口处取得信号后,将由 1和 0 构成的比特流再生后产生新的数据信号并将其从出口送出。3、传输损耗衰减的三个问题:a、接收到的信号必须有足够的强度。b、信号必须比收到的噪声维持一个更高的电平。c、在模拟信号传输中,衰减是频率的增量函数。解决 a、b 问题用增加信号强度,设置放大器或中继器。解决 c 问题是使用技术手段使在某个频带内的频率衰减趋于相等或使用高频

17、放大器将高频放大。延迟变形:由于信号中各种成分延迟使得接收到的信号变形的这种效果。这是有线类传输介质独有的现象。噪声:传输和接收之间的某处插入的不必要的信号。它是通信系统性能(特别是带宽的使用效率)的主要制约因素。四类噪声:a、热噪声:是温度的函数。b、内调制杂音:当不同频率的信号共享同一传输介质的时候,可能导致内调制杂音。这些信号的频率是某两个频率和、差或倍数。c、串扰:信号通路之间产生的不必要的耦合。d、脉冲噪声:是非连续的,在短时间里具有不规则的脉冲或噪声峰值,并且振幅较大。对数字传输影响较大。信道容量:对在给定条件,给定通信路径或信道上的数据传送速度。信道的最大容量: 1)、Nyqui

18、st 定理:C = 2Wlog 2 M 是非理想有限带宽无噪声信道的最大数据传输的表达式。2)、Shannon 定理:C = W log 2 (1+S/N) 其中 C 为信道容量(b/s),W 为信道带宽(Hz),S/N 为信(号)噪(声)比(dB)。此定理是估计有噪声信道的最高极限速率的依据。4、有线传输介质 (领会)同轴电缆: 分为 75 欧姆宽带同轴电缆和 50 欧姆基带同轴电缆。局域网中常用基带电缆:数据传输率达 10Mb/s,均用于总线拓扑结构。分细缆和粗缆:细缆的断头要装基本网络接头(BNC)或 50 欧姆终端匹配器,再接在 T 型连接器两端。最大传输距离 925 米,粗缆:必须装

19、收发器和收发器电缆。最大距离可达 2500 米。双绞线电缆: 主要用于星形拓扑结构。分非屏蔽(UTP)和屏蔽(STP)电缆。传输距离限于 100 米内。内部的多对双绞线采用了每对电缆的绞矩与所能抵抗电磁辐射干扰成正比,并可降低非平衡型互电容。非屏蔽双绞线(UTP)定义了五种质量类别,计算机网络中常用的有三种:第 3 类:传输特性最高规定16MHz,用于语音和数据最高传输速率为 10Mb/s。第 4 类:传输特性最高规定 20MHz,用于语音和数据最高传输速率为 16Mb/s。第五类:传输特性最高规定 100MHz,用于语音和数据最高传输速率为155Mb/s。光纤: 由纤芯(光的通路)、包层(多

20、层反射玻璃,将光线反射到纤芯)及保护层组成。常用于点到点的远距离传输。由于光纤在任何时间只能单向传输,因此实现双向通信必须成对出现。用光纤来传输电信号时,在发送端先要将其转换成光信号,而在接收端要由光检波器还原成电信号。可分为单模和多模两种传输方式:单模提供单条光通路,衰减小,容量大,但价格昂贵;多模光纤发散为多路光纤。每一路光纤走一条通路。5、无线传输介质大气和外层空间是提供电磁信号传播的无线型介质。传输和接收是通过天线完成的。无线传输有定向和全向两种方法。1)、地面微波:要求在“可视线”范围内进行传输,通过微波中继站的串联使用完成远距离远程通信服务。2)、卫星微波:通信卫星是一个微波转播台

21、。卫星从一个频率(上行链路5.93-6.42GHz)接收地面传输来的信号,将其放大或再生后,再从另一个频率(下行链路 3.7-4.2GHz)发送到地面站。具有广播性质,但有 1/4 秒的传输延迟。3)、红外传输:使用调制非相干红外线光的收发机进行可视线内直接或经浅色表面的反射传递信息。6、数据编码数字数据的数字信号编码:用两个电压电平来表示两个二进制数字。 编码方式有: a、不归零制NRZ:无电压表是 0,负电压表是 1。b、曼彻斯*:在每位的中间有一个跳变,既作为时钟又作为数据,从高到低的跳变表示 1,从低到高的跳变表示 0。c、差分曼彻斯*:取值由每位开始的边界是否存在跳变而定,一位的开始

22、边界有跳变代表 0,无跳变代表 1。数字数据的调制编码: 在模拟信道上传输数字信号时,将数字数据调成模拟信号才能传送。数字数据用模拟信号进行调制的三种形式:a、幅移键控法 ASK(调幅):用载波频率的两个不同的振幅来表示两个二进值。b、频移键控法 FSK(调频):用载波频率附近的两个不同的频率来表示两个二进值。c、相移键控法 PSK(调相):用载波信号的相位移动来表示数据,可以用多于二相的位移。模拟数据的数字信号编码:将模拟数据转换成数字数据。常用调制方式:脉冲编码调制(PCM 编码),将一个模拟信号转换为二进制数码脉冲序序列的过程。PCM 编码过程: 采样:根据采样定理,每隔一定时间对连续模

23、拟信号采样,产生离散的脉冲信号。 采样定理:一个连续变化的模拟信号,假设有最高频率或带宽 F max ,若周期采样周期为 T,则采样频率为F=/T,若能满足 F=1/T=2F max ,即采样频率大于或等于模拟信号最高频率的两倍,那么采样后的离散序列就能无失真地恢复出原始连续模拟信号。 量化:把采样所得到的脉冲信号按量级比较,并且“取整”,把脉冲信号转换成数字信号。这是一个分级过程。 编码:用以表示采样序列量化后的量化幅度,用一定位数的二进制码表示。如果有 N 个量化级,就应当有 log 2 N 位二进制数码。第 3 章 通信接口和数据链路控制本章介绍了 OIS/RM 开放系统互联参考模型中的

24、最底层物理层、数据链路层及部分网络层所应用的有关协议和技术。重点掌握数据通信基本过程及数据通信接口。难点是理解数据链路控制概念。本章的“数据链路控制”考核要求为“领会”层次。1、数据通信接口 数据传输和交换的基本过程:数据从发送端出发到数据被接收端接收的整个过程称为传输过程。每次传输包含两个内容,即通信控制和传输数据。通信控制主要执行各种辅助操作。数据传输常划分五个阶段:a、建立通信线路。 b、建立数据传输链路。c、传送通信控制信号和传送数据。d、数据传输结束。e、由通信双方之一通知交换网络,通信结束,切断数据传输链路。(采用专线通信时,第a,e 两个阶段可省略。) 数据链路层的任务是向较高层

25、提供相邻节点间可靠的基本无差错的数据传输。数据链路层的协议是数据通信控制规程。物理层的任务是将用二进制位表示的信息转化为可在实际线路上传输的物理现象。 两个直联的站点之间进行有效的数据通讯所必须的条件:a、帧同步。b、流量控制。c、错误控制。d、寻址。e、在链路上同时传输控制和数据信息。f、连接管理。 异步传输:数据以字符为传输单位,字符发送时间是异步的,即后一字符的发送时间与前一字符的发送时间无关。时序或同步仅在每个字符的范围内是必须的,接收机可以在每个新字符开始是抓住再同步的机会。同步传输:以比特块为单位进行传输,发送器与接收机之间通过专门的时钟线路或把同步信号嵌入数字信号进行同步。异步传

26、输需要至少 20%以上的开销,同步传输效率远远比异步传输高。常用的同步传输链路控制协议 HDLC 开销为 0.6 %。 识别数据链路的特征是,线路拓扑和半双工或全双工连接形式。线路拓扑是指传输介质上工作站点的物理配置。半双工:在点对点连接中,允许数据沿两个方向传输,但在每一时刻,信息只能沿一个方向传输。全双工:允许在两个方向上同时传输数据。 数据终端设备 DTE 和数据线路端接设备 DCE 之间的接口标准特性:机械的、电气的、功能性、过程性。常用的接口标准:V.24/EIA-232-E 接口(232 接口),用于 DTE 设备与语音级调制解调器的连接,以利用公众模拟远程通信系统传输数据。使用

27、25 线进行全双工数据传输。信号地线作为全部数据线路的公共回线,因此这种传输是不平衡的。ISDN 物理接口:使用 8 线平衡传输方式。平衡方式比不平衡方式能容忍更高的噪声,而产生的噪声却更少。 2、数据链路控制(领会) 流量控制目的:使从源点发出的信息流量不超过目标结点的的接收能力,使从源点发出的信息流量不超过传输线路的传输能力。在数据链路层上控制的是相邻节点间数据链路上的流量,在传输层上控制的是端到端的流量。 停-等协议:是最简单的单工流量控制策略。操作过程: 初始时,双方的帧编号都为 0。发送方维护的帧编号表明当前所发帧的序号,接收方维护的帧编号表明当前期望接收的帧序号。 发送方从缓冲区中

28、取出一个帧,加上帧编号发送。 接收方接收帧并校验。如果帧校验正确且帧编号同期望接收的帧序号相同,则将该帧存入缓冲区,将接收方维护的帧编号取反,放入应答帧;如果帧校验出错或帧编号不是当前期望接收的帧序号,则维持帧编号不变,并发回应答帧,要求重发指定的帧。 发送方收到应答帧后,如果帧编号与当前维护的帧编号不同,则表明当前帧已被正确接收,将发送方维护的帧编号取反,从缓冲区中取出一个新的帧,加上帧编号发送;如果应答帧中的帧编号与当前维护的帧编号相同或超时未收到应答,则重发当前编号的帧。超时时间=(信号从发送端到接收端传输时间*2接收端处理时间) 滑动窗口协议:是异步双工传输模式。基本概念:“发送窗口”

29、在发送端保存的一张允许连续发送的帧的序号表。把即将发送的帧的序号称为“发送窗口前沿”。最早发送但还未收到应答的帧的序号称为“发送窗口后沿”。只有其序号处于发送窗口内的帧才能继续发送出去。发送端可以不等待应答而连续发送的最大帧数称为“发送窗口的尺寸”。如果用 n 比特表示帧的序号,则帧序号的取值范围从 0 到 2n-1。“接收窗口”接收方允许接收的帧的序号表,凡在接收窗口内的帧,接收方都必处理,在接收窗口外的帧被丢弃。不管接收窗口大小如何,接收方送给上层的数据总是有序的。“捎带应答”:在通信中,通讯双方在数据帧中增加一个字段,专门用来携带给对方的应答信息。通常用对某一个帧的应答来代替对该帧之前的

30、所有帧的应答。当发送窗口和接收窗口的尺寸都为 1 时,则蜕变为停-等协议;当发送窗口大于 1 而接收窗口等于 1 时,(发送窗口的尺寸不能超过 2n-1),则采用出错全部重发协议;当发送窗口和接收窗口都大于 1 时,(接收窗口的尺寸不能超过 2n-1),则采用选择重发协议。 差错控制:保证所有的帧最终都按顺序正确投送到目的主机的网络层。传输错误有两种:a、单个错:由随机的信道热噪声引起,一次只影响一比特,且错误之间没有关联。b、突发错:由瞬间的脉冲噪声引起,产生连串错码, 错码前后有关联。突发错所影响的最大连续数据比特数称为突发长度。基本概念:在数据块中加入冗余信息的过程称为差错编码。检错码:

31、只具有检错功能,但不能确定错误位置,也不能纠正错误。纠错码:具有纠错功能,将无效码字恢复成距离它最近的有效码字,但不是 100%正确。两个码字的对应比特取值不同的比特数称为这两个码字的海明距离。一个有效编码集中,任意两个码字的海明距离的最小值称为该编码集的海明距离。重要结论:如果要能纠正 d 个错误,则编码集的海明距离至少应为 2d+1。 海明码:是一种可以纠正一比特错的高效率线性分组码。基本思想:将待传信息码元分成许多长度 k 的组,其后附加 r 个监督码元(也称校验比特),构成长为 n=k+r 比特的分组码。分组码中每个校验比特和某几个特定的信息比特构成偶检验关系。校验比特数 r 必须满足

32、:2r=n+1,即2r=k+r+1。 循环冗余码(CRC):又称多项式码,漏检率非常低,只要用一个简单的电路就能实现。(请理解书上有关例题。) HDLC 协议(高级数据链路控制协议):是面向比特的通信协议,以比特作为传输的基本单位。HDLC 帧结构、内容:F A C INFO FCS F 符号 定 义 长度(bit) 内 容 F 标志域 8 用特殊的位模式 01111110 作为标志确定帧首、帧尾。 A 地址域 8 标识从站的地址。 C 控制域 8 用控制域的格式区分信息帧、管理帧、无编号帧三种帧。 INFO 信息域 任 意 透明、编码独立的数据信息。只有信息帧和某些无编号帧含有信息域。 FC

33、S 帧校验序列域 16 采用循环冗余校验(CRC)除标志域外的所有其他域的校验序列。 HDLC 帧类型:1)信息帧(I 帧):用于实现信息的编号传送,其控制段的第一位为 0,它具有发送序号 N(S),用于标明所发送信息帧的序号,只有信息帧才有此序号。还有捎带的肯定应答信号 N(R),用于标明预期接收的帧的序号,并对以前收到的帧进行确认。P/F:询问/终止位。2)管理帧(S 帧):用于实现流量和差错控制。控制字段的前两位为 10。只含有接收序号 N(R),作用同 I 帧的 N(R)。不包含信息段。3)无编号帧(U 帧):用于链路控制。无 N(S),N(R)字段。 HDLC 操作过程:请理解书上图

34、 3.19 HDLC 操作示例。 3、多路复用技术:把许多单个信号在单一的传输线路和用单一的传输设备进行传输的技术。多路复用一般有两种:频分多路复用(FDM)、时分多路复用(TDM)。FDM:把传输线的总频带划分成若干个分频带,以提供多条数据传输信道,每个信道以某一固定频率提供给一个固定终端使用,多用于模拟信号传输。TDM:各路信号按时间相位错开共享同一信道,在时间上按顺序排队轮流传输,因此在宏观上(报文级)是并行的,但在微观上(字符级)是串行的。多用于数字信号的传输。 第 4 章 数据交换技术本章介绍网络中使用的各种数据传输技术。重点掌握线路交换及报文交换的基本原理。难点是理解 X.25 协

35、议的缺陷及帧中继和 ATM 技术在改进报文分组交换技术方面的发展。本章的“线路交换”、“报文分组交换”考核要求为“领会”层次。帧中继和 ATM 在本章介绍了一些基础内容,在后面有关章节中考核要求为“简单应用”层次。1、 线路交换在两个终端开始通信前,需建立一条源端到目标端的直通路径,线路建立时间长。一旦线路建立起来,信息传输延迟时间短。适合于语音交流。线路交换的通信过程:a、建立连接。b、数据传送。c、断开连接。线路交换网络结构:a、用户分机。b、本地回路(用户回路):用户和网络之间的链路。c、交换机:网络的交换中心。d、主干线:交换机之间的线路。线路交换技术:a、空分交换。交换机的基本构件是

36、可由控制部件通断的金属交叉形触点或半导体门电路,通过它可在各输入线和输出线之间构成任意物理通路。b、时分交换。是时分复用(TDM)在交换上的应用,将输入信号按顺序取样,组织成位流段的循环帧,每帧的位流段数量等于输入信号的数量。允许多个低速位流共享一条高速总线,以提高线路的利用率。因此,总线上的数据传输速率决定了可同时进行通信的线路数量。2、 报文分组交换把较长的报文分解成一系列报文分组, 以分组为单位 采用“存储-转发”交换方式进行通信。优点:a、线路利用率高。b、报文分组交换网能实行数据传输速率转换。c、报文分组交换存在一定的延时,网络中的信息流量越多,时延就越大。d、能使用优先级别。对重要

37、的、紧急的报文分组可实行优先传送。 数据报: 在数据报传输方式中,把每个报文分组都作为独立的信息单位传送,与前后的分组无关,数据报每经过一个中继节点时,都要进行路由选择。 虚拟线路: 报文分组发送前,在源主机与目标主机之间各个中继节点建立发送路由,再进行报文分组的传输,所有报文分组都是按发送顺序到达目标主机,路由在逻辑连接期间都是固定的。线路交换和报文分组交换的比较: 信息形式:线路交换既适用于模拟信号,也适用于数字信号。报文分组交换只适用于数字信号。 连接建立 http:/ 线路交换的平均连接建立时间较长,而报文分组交换没有连接建立时延。 传输时延:在线路交换中,提供透明的服务,信息的传输时

38、延非常小,数据传输数率恒定。对于报文分组交换在每个节点的调用请求期间都有处理延时,且这种延时随着负载的增加而增加。 传输可靠性:在报文分组交换中,设置有代码检验和信息重发设施,此外还具有路径选择功能,从而保证了信息传输的可靠性。 报文分组交换网的阻塞控制:a、将报文分组丢弃。b、采用某种流量控制手段将报文分组从其相邻节点通过。 X.25 协议:报文分组交换协议标准,是“在公用数据网(PDN)上以分组方式工作的数据终端设备DTE 和数据电路端接设备 DCE 之间的接口”。分三个功能层次:物理层、链路层、报文分组层。分组层采用异步时分复 用方法,根据需要将 DTE-DCE 链路复用为多条全双工呼叫

39、虚电路(调用虚电路)或永久虚电路。我国公用数据网遵守 X.121 编号制度的建议,根据该建议,DTE 与 DCE 之间的链路最多有 212-1=4095条虚 拟线路。(每个报文分组都包括 12 位的虚拟线路号码,4 位逻辑组号加 8 位逻辑通道号。) 帧中继(Frame Relay):利用数字系统的低误码率和高传输速率的特点,为用户提供质量更高的快速分组交换服务。快速分组交换:当一个节点还在接收一个帧是就转发此帧的方法。帧中继的体系结构:它沿用了分组交换把数据组成不可 分割的帧的方法,以帧为单位发送、接收和处理。为了克服分组交换开销大,时延长的缺点,遵从 ISDN 用户数据与信令分离的原则,分

40、成与用户信息传输有关的U(User)功能及与呼叫控制有关的 C(Control) 功能,将网络的去里工作减少到了最小程度。帧中继帧的格式:帧中继的帧格式和 HDLC 的帧格式非常类似,两者最重要的区别是帧中继的帧格式中没有控制字段。 ATM 异步传输模式:以固定长度的信元(Cell)为单位,在数据链路层上进行数据交换。基本概念:ATM 网络结构:是面向连接的多级交换网络结构,由用户网络接口(UNI)、网络网络接口(NNI)构成。ATM 信元:由 5 字节信元+48 字节信息段构成。信元的交换控制是根据信头而进行的,信头用于存放信元的路径及其他控制信息。 信头结构: GFC:一般流量控制:又称多

41、址访问控制,当多个用户终端连接到 ATM 交换机的同一链路,用GFC 标志不同用户,支持点到多点访问。只用于 UNI 接口。 VPI 虚通路标志符和 VCI 虚通路标志符:VPI 和 VCI 一起标志传送 ATM 信元的逻辑通道,用它们可以把一条物理链路分为若干个逻辑通道,建立虚通路和虚通道。 PTI:承载类型指示。用于指明信元中的信息域的类型。 CLP:信元优先丢弃位。当网络阻塞时,首先丢弃 CLP 等于 1 的信元。 HEC:信头差错控制。用来检测信头中的错误,可纠一位错,检多位错,在物理层实现。 ATM 物理层:完成信元编码和传送的功能,分为 TC 和 PMD 两个子层,分别和 OSI

42、参考模型的数据链路层和物理层相当。1)、TC 子层的任务是接收 ATM 层的信元流,根据使用的传输系统,转换成比特流,送 PMD 子层传输。信元速率适配:ATM 物理链路中比特流是连续传送的,比特速率是一个恒定值。信元边界确定:ATM 系统中的信元定界是借助信元头中的 HEC 实现的。2)、PMD 子层的主要功能是线路编码和比特时钟同步。 ATM 层:在物理层上,为各种业务提供信元传输功能,提供端到端的数据服务。基本要素是虚连接。ATM 层功能分为三大类:信元复用/解复用,信元传输、流量控制、阻塞控制。 ATM 适配层:位于 ATM 层和高层应用之间,目的是为应用程序提供所需的服务。定义了四种

43、类型的AAL:AAL1、AAL2、AAL3/4、AAL5。AAL1 适配面向连接的实时性恒定比特率业务。AAL2 传输 B 类业务即可变化比特率、面向连接的实时业务。AAL3/4:用于传输可变长度的用户数据。AAL5:用于 CPCS 层以下适配开销较低且检错较好的业务。第 5 章 网络互联本章详细介绍开放系统互联参考模型(OSI/RM)、OSI 各层概述,及其他网络系统结构。重点掌握OSI/RM 模型。 本章的“网络体系结构”考核要求为“领会”层次。1、网络体系结构为了完成计算机间的通信合作,把各个计算机互联的功能划分成定义明确的层次,规定了同层次进程通信的协议和相邻层之间的接口服务。这些层、

44、同层进程通信的协议及相邻层接口统称为 网络体系结构。 网络协议三要素:语义、语法、规则。2、开放系统互联参考模型(OSI/RM)OSI 模型最初是用来作为开发网络通信协议 族的一个工业参考标准。通过严格遵守 OSI 模型,不同的网络技术之间可以轻易地实现互操作。 七层模型(从下至上):物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 在网络数据通信的过程中,每一层完成一个特定的任务。当传输数据的时候,每一层接收到上面层格式化后的数据,对数据进行操作,然后把它传给下面的层。当接收数据的时候,每一层接收到下面层传过来的数据,对数据进行解包,然后把它传给上一层。从而实现对等层之间的逻辑通

45、信。OSI 模型的一个关键概念是虚电路。OSI 模型的网络中每一部分都不知道其上面层和下面层的行为和细节;它只是向上和向下传输数据。就模型的层次而言,每一层都有一虚电路直接连接目的主机上的对应层。就每一层而言,它的数据在目的层被解包的方式和被打包的方式是完全一样的。层不知道传输数据的实际细节;它们只知道数据是从周围层中传过来的。OSI 模型的有关术语: SDU 服务数据单元(Service Data Unit)指的是第 n 层待传送和处理的数据单元。 PDU 协议数据单元(Protocol Data Unit)指的是同等层水平方向传送的数据单元。 IDU 接口数据单元(Interface Da

46、ta Unit)指的是在相邻层接口间传送的数据单元,它是由 SDU 和一些控制信息组成。 SAP 服务访问点(Service Access Point):相邻层间的服务是通过其接口界面上的服务访问点SAP 进行的,n 层 SAP 就是 n+1 层可以访问 n 层的地方。每个 SAP 都有一个唯一的地址号码。3、OSI 各层概述物理层:是 OSI 的最低层,是网络物理设备之间的接口,目的是在通信设备 DTE/DCE 之间提供透明的比特流传输。DTE 数据终端设备指计算机网络中用于处理用户数据的设备,是计算机网络的数据信源和信宿。 DCE 数据电路端接设备:它介于 DTE 与网络中传输介质之间的设

47、备。物理层提供的服务:a、物理连接。b、物理服务数据单元。c、顺序化:接收物理实体收到的比特顺序,与发送物理实体所发送的比特顺序相同。d、数据电路标识。数据链路层:主要用途是为在相邻网络实体之间建立、维持和释放数据链路连接,以及传输数据链路服务数据单元。 数据链路层的功能: a、数据链路连接的建立与释放。b、构成数据链路数据单元。c、数据链路连接的分裂。d、定界与同步。e、顺序和流量控制。f、差错的检测和恢复。 数据链路层协议: 面向字符的通信规程和面向比特的通信规程。高级数据链路控制规程 HDLC 是典型的面向比特的通信规程。网络层:以数据链路层提供的无差错传输为基础,为实现源 DCE 和目

48、标 DCE 之间的通信而建立、维持和终止网络连接,并通过网络连接交换网络服务数据单元。它 主要解决 数据传输单元分组在通信子网中的路由选择、拥塞控制问题以及多个网络互联的问题。 网络层的功能: a、建立和拆除网络连接。b、路径选择和中继。c、网络连接多路复用。d、分段和组块。e、服务选择。f、传输和流量控制。网络层的服务:数据报服务和虚电路服务。 路由选择算法的要求: 正确性,简单性,健壮性,稳定性,公平性和最优化。虚电路和数据报的比较 项 目 虚 电 路 数 据 报 目标地址 仅建立连接时需要 每个分组都需要 初始化设置 需要 不需要 分组顺序 由通信子网负责按序到达 不保证 差错控制 由通

49、信子网负责 由主机负责 流量控制 通信子网提供 网络层不提供 连接的建立和释放 需要 不需要传输层: 是资源子网与通信子网的界面与桥梁 ,它完成资源子网中两结点间的逻辑通信,实现通信子网中端到端的透明传输。传输层的功能:a、映象传输地址到网络地址。b、多路复用与分割。c、传输连接的建立与释放。d、分段与重新组装。e、组块与分块。 网络层 服务可分成三类:A 类:网络连接具有可接受的差错率和可接受的故障通知率,A 类服务是可靠的网络服务,一般指虚电路服务。C 类:网络连接具有不可接受的差错率,C 类的服务质量最差,提供数据报服务或无线电分组交换网均属此类。B 类:网络连接具有可接受的差错率和不可接受的故障通知率,B 类服务介于前二者之间,广域网多提供 B 类服务。根据不同的网络层服务, 传输层协议 分为 0-4 五类。会话层:它利用传输层提供的端到端数据传输服务,具体实施服务请求者与服务提供者之间的通信,属于进程间通信范畴。会话层的功能:a、会话连接到传输连接的映射。b、数据传送。c、会话连接的恢复和释放。d、会话管理。e、令牌管理。f、活动管理。表示层:目的是处理有关被传送数据的表示问题。对通信双方的计算机来说,一般有其自已的数据内部表示方式,表示层的任务是把发送方具有

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报