收藏 分享(赏)

第二章-生物医学工程八大研究领域注释.ppt

上传人:无敌 文档编号:27113 上传时间:2018-03-04 格式:PPT 页数:42 大小:144.02KB
下载 相关 举报
第二章-生物医学工程八大研究领域注释.ppt_第1页
第1页 / 共42页
第二章-生物医学工程八大研究领域注释.ppt_第2页
第2页 / 共42页
第二章-生物医学工程八大研究领域注释.ppt_第3页
第3页 / 共42页
第二章-生物医学工程八大研究领域注释.ppt_第4页
第4页 / 共42页
第二章-生物医学工程八大研究领域注释.ppt_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、生物医学工程八大研究领域解释, 生物力学 生物材料学 人工器官 生物系统建模与仿真 生物医学信号与传感器 生物医学信息处理 医学图像技术 物理因子在治疗中应用及生物学效应, 生物力学 (Biological Mechanics) :一、定义:生物力学是力学与生物学、医学等学科之间相互渗透的边缘学科。它的目的是试图从力学的角度来了解生命。具体地说,它将用经典力学、固体力学、流体力学的知识来解释生命的某些现象;用力学的方法定量地分析、研究生命系统的功能与构造的关系,进而探讨生命的整个力学过程。,二、研究领域:生物力学所涉及的领域很广,目前认为它主要包括 骨骼生物力学、 人体运动力学、 血液循环力学

2、、 呼吸流变学、 生物热力学等分支学科。生物力学的研究,加深了对血液流变特性与疾病的关系,骨力学特性与骨折愈合的关系,血液流动规律与心血管疾病的关系等的理解。应用生物力学的研究成果,指导人工关节、人工心脏瓣膜等人工器官的设计。,三、发展概况:近年来,由于医学科学技术的发展,仿生学、宇航技术的进步,给生物力学提出了一系列问题,促进了生物力学的蓬勃发展。60年代后期,电子计算机开始用于医学,为生物力学开辟了新的前景。生物力学的研究开始于60年代。1960年,美国的第一届仿生学讨论会引起了人们对生物力学的注意和兴趣。此后,美、欧、日、苏、澳、加等国都相继建立了专门的研究机构,并多次召开国际性生物流变

3、学会议和生物力学讨论会。1978年,在中国科学院组织的全国力学规划会议上,将生物力学作为一门独立的学科列入规划中。与此同时,中国力学会组织了全国性的生物力学专业组。此后,国内诸多著名大学相继建立了生物力学研究所或研究机构,并召开了多次全国性和地方性生物力学学术会议,通过交流更进一步促进了我国生物力学的发展。,骨骼生物力学(Skeleton Biological Mechanics),定义:骨骼生物力学是生物力学的重要分支。尽管骨力学的研究已有上百年的历史,但至今仍有许多问题处于有待深入研究的状态。这是因为生物体是有生命的,与无生命的工程材料结构有着根本的不同。因此,用力学原理来研究生物组织、器

4、官和生物体是一件比较艰难和复杂的工作。研究内容:骨骼生物力学研究骨和骨骼体系的力学问题、骨的微观结构与宏观力学效应的关系、骨的耦合力学效应、骨的生长与断裂的力学问题及骨骼生长的控制论等。骨骼在生物体内占有重要的地位。骨的组织结构十分复杂,与生物材料力学的关系十分密切。,近年来还有对骨的一般力学性质、骨的粘弹性性质、人颅骨冲击韧度的测定、脊柱力学的性质、关节受力分析、人工关节、骨伤、骨愈合的临床研究,骨科复位固定器的效应分析等有成效的研究。前景:目前,对于骨的动力特性和骨作为一种有生命的组织的微观力学效应等方面,研究尚较少。骨骼生物力学在医学方面的研究与应用有着广阔的前景,如骨的再造理论,骨的生

5、长与应力关系的理论等,对于矫形外科、骨伤的治疗、防护及辅助器具的设计等许多方面都有着重要的作用。,骨骼生物力学的临床应用举例:人工关节材料的选择人工关节置换术是骨骼生物力学最活跃的一个应用领域。人工关节的应用已有近百年历史。现在人工关节种类繁多,从人工关节设计、制造、植入和维护,既有工程问题,也有骨力学问题。选做工关节材料的基本要求是:与骨组织间有良好的生理相容性与耐腐蚀性;有足够高的强度与疲劳寿命、较好的抗磨损性;良好的可加工性等。已被用做人工关节的材料有:超高分子聚乙烯、不锈钢、钛合金、钴铬钼合金、陶瓷、硅橡胶和炭质材料,其中陶瓷材料正逐渐被重视。由于以上材料的使用,使人工关节的适应范围和

6、效果都有很大发展。从临床的使用来看,以上材料的人工关节尚未引起抗原性反应或致癌。,金属材料的磨屑可增加感染率。单纯的钛抗磨损能力较差,但钛合金则能提高抗磨损性能。钴铬钼合金也有好的耐磨性,但与骨相比,其刚硬度太大:另外炭质材料有优良的生物相容性,其力学性质上,有很强的耐磨损性。它的力学性质与密质骨也比较接近,其疲劳寿命也较长,但其强度较低,目前只用于小关节。动物实验表明:钴铬钼合金有较好的生理相容性,但长期使用这种台金制成的人工关节,其血液与头发中钴的含量明显增加。超高分子聚乙烯有高度疏水性,耐磨性也好,多用来做人工关节臼。陶瓷材料有足够的强度,耐磨性能好。硅橡胶有较好的生理相容性,但强度低,

7、一般也只用于小关节。 尽管人工关节材料有较多优点,但也存在尚未克服的缺点如金属的电解、疲劳、腐蚀、磨损、松动、骨质吸收等;塑料材料的老化、变脆;陶瓷优点较多,但其质脆、易折。上述材料有否致癌作用,尚待进一步研究。,生物材料(Biomaterial):一、定义:生物材料学是研究用以治疗或替换机体内的组织、器官或增强其功能的材料,以及这些材料与生物体之间的相互作用的学科。生物材料是与人体组织、体液或血液相接触或作用而对人体无毒、无副作用、不凝血、不溶血,不引起人体细胞突变、畸变和癌变,不引起免疫排异和过敏反应的特殊功能材料。迄今,生物材料有近千种,但被广泛应用的仅十余种。这些材料主要分为医用合成或

8、天然高分子材料、医用金属材料、医学陶瓷、医用碳素材料,以及它们的复合材料等类。,二、研究领域:较活跃的研究开发领域有: 高抗凝血材料、 生物活性陶瓷及玻璃、 钛及钛合金、 生物活性缓释及描靶药物载体材料、 生物粘合剂、 可吸收性生物材料、 甲壳素及其衍生物的医学应用等。三、基本要求生物材料的种类十分繁多,用途非常广泛。对生物材料的基本要求是:1.对生物体无害(生物性能);2.有一定机械强度(机械性能);3.有一定使用寿命(耐生物老化性能)。,三、应用:生物材料已成功地应用于:人工心脏瓣膜、人工血管、人工骨与关节、医用导管、齿科材料、外科缝线、药物缓释载体、透析与超滤膜材料、一次性和植入性医用制

9、品等方面。,四、发展趋势:材料技术的发展趋势之一是尺度向越来越小的方向发展,以前组成材料的颗粒,其尺寸都在微米(百万分之一米)量级 ,而现在出现了向纳米(十亿分之一米)尺度发展的材料。纳米技术是继互联网、基因之后人们关注的又一大热点。洞察微观世界的秘密,需要借助仪器来开拓视野、延伸双手。年代初期,公司在世界上第一次研制成功表面分析仪器扫描隧道显微镜(),使人类第一次能够观察到单个原子或分子的排列状态。它给我们提供了对纳米结构进行测量和处理的“眼睛”和“手指”。形象地说,如果人站在月球上看地球,肉眼看见地球是一个球体,无法分辨出细节。用放大倍的光学显微镜可以看到地球上的楼房。但如果使用放大上亿倍

10、的扫描隧道显微镜,则可以看到建筑物水泥墙或泥土中的沙粒。,什么是纳米?纳米(nanometer):长度单位的一种,1纳米=10-9米,即十亿分之一米。大约相当于头发粗细的八万分之一。21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。 90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。而纳米材料则是由许多的原子分子构成的具有纳米结构特征的物质。纳米粒子就是纳米尺寸大小的微小颗粒。这

11、种纳米粒子表面积很大,每克达几百至几千平方米。表面具有很大的能量,具有常规材料根本不可能出现的多种新的功能和特性。,纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。 纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。 由于颗粒极度细化,晶界所占体积百分数增加,使得材料的某些性能

12、发生截然不同的变化,例如,以前给人极深印象的陶瓷,纳米化居然可以用来加工制造发动机零件,在医学上被用于骨科及齿科材料。,纳米技术的基本涵义:是指在微观环境下,即在纳米尺寸范围内,人类将认识和改造自然的能力延伸到原子、分子水平,通过直接操纵和安排原子、分子,原子团或分子团,使其重新排列、组合,创造出新的物质或物品的高新技术。纳米材料的主要特点是什么? 呈现出与常规材料完全不同的性质,纳米铁具有极强的磁性、不导电材料变成导电、特殊的远红外线辐射、强的紫外反射、强吸附性、强催化作用等等。,晶粒尺寸的减小将对力学性能产生很大的影响,使材料的强度、韧性和超塑性大大提高。在人工器官制造、临床应用等方面,纳

13、米陶瓷材料比传统陶瓷材料有更广泛的应用和发展前景。纳米碳材料的应用,使碳质人工器官、人工骨、人工齿、人工肌腱的强度、硬度、韧度等多方面性能显著提高。利用纳米碳材料的高效吸附性,可将它用于血液的净化,清除某些特定的病毒或成分。目前尽管已对纳米材料的制备、结构与性能进行了大量的研究,但在基础理论及应用开发等方面尚有大量的问题待探讨。但其所表现出的优异性能预示它在生物医学工程领域尤其是在生物材料和人工器官、介入性治疗、药物载体、血液净化、生物大分子分离等方面具有广泛的应用前景。,纳米技术已经渗透到:材料与制造、医学与健康、环境与能源、纳米电子学与计算机技术、航空航天探测等领域。美国科学基金会发表了4

14、00页的报告,来说明纳米技术对人类社会带来的影响。报告指出:在十到十五年间,整个半导体产业和一半以上的制药工业,将依赖于纳米技术。2000年美国克林顿政府提出了一个国家纳米技术创新计划,2001拨款达为4.22亿美元。,生物系统建模与仿真一、定义:生物系统建模是对生物的细胞、器官和整体各个层次的行为、参数及其关系建立数学模型的工作,最终希望用数学的形式表达出来。建模的目的是为了更好地了解生物系统的行为及规律,为生物控制奠定基础。生物系统的仿真是用电子计算机求解生物系统的数学模型以分析和预测各种条件下生物系统运行机制和状态的工作。,二、意义与作用生物体是十分复杂的系统,即使最简单的红细胞也包含着

15、约2000种代谢反应,而大脑的复杂性就更是无法比拟的了。因此研究这种复杂的生物系统就需要十分复杂的实验,而对于某些条件下的生物系统研究,其实验往往难以进行。生物系统建模与仿真可以将生物系统简化为数学模型并对此模型进行计算机分析,从而代替实际的复杂、长期、昂贵及无法实现的实验,大大提高研究效率和定量性,并可研究人为施加控制条件以影响生物系统运行过程。,生物系统建模与仿真可用于鉴别人体参数的异常以进行疾病诊断、糖尿病等疾病的预报、血压等参数的自适应控制。此外,在医疗仪器的研制和生物学、生理学、仿生学等学科的发展中,生物系统建模与仿真也具有很大价值。 生物系统控制是人为地外加控制条件来影响生物系统的

16、生命过程,以达到某种特定的目的。如我们研究血压、 PH、体温与心率的关系,建立相应的数学模型,为研制按需型心脏起搏器提供理论基础。建立流行病模型,为人们制定疾病的防疫措施提供理论依据。,物理因子在治疗中的应用及其生物学效应一、定义:应用电、磁、辐射、超声等物理能量作为治疗疾病或缓解病痛是药物和手术治疗以外的重要的治疗手段。研究电、磁、辐射、超声等物理能量作用和机理,并确定其有效剂量和安全标准,从而发展应用物理因子治疗疾病的技术,并防止其可能的有害影响。,二、临床应用激光辐射生物体后,由于组织可能产生光致热、化学、压强、电磁场和生物刺激等效应,发生组织形态和功能的变化,故可用于临床治疗。强激光用

17、于光凝、汽化和切割等手术治疗,弱激光用于一般理疗和针灸等非手术治疗,应用激光光动力学治疗恶性肿瘤,激光治疗已扩展到临床各领域。微波和超声为热源的肿瘤加热疗法,近年来进行了大量的研究和开发工作,已有产品应用于临床。这种方法的优点是可在不损伤正常细胞情况下杀伤癌细胞。加热疗法的研究动向主要在热源、加热区域定位、体内测量与控制等方面。在动态实时图像引导下,把精巧的手术器械经腔口、小切口或血管导管送到病患的部位进行手术治疗的方法称作介入性疗法,由于创伤小,危险性小,费用少,故近年来发展较快。最具代表性的是经皮冠状动脉腔内成形手术,还可施行热切除、射频消融、除颤、高速旋切等操作。介入性治疗中必须有超小型

18、精巧的工具、符合临床要求的材料和良好的工艺,这是工程性研究的主要内容。,高能量电离辐射光子或高能粒子照射人体内病变部位可起到治疗作用,这种方法称为放射治疗。现已广泛使用的是以钴60的射线和直线加速器产生的电子流在靶上打出的硬X射线照射病变部位,主要用于治疗恶性肿瘤。近年来用中子流和同步加速器中高能粒子束辐射出的连续硬X射线治疗恶性肿瘤的报道很多,但这需要昂贵的设备和条件,难以推广。利用聚焦的连续超声振动或冲击波振碎病变结石的冲击波碎石技术近年来发展很快。各种低频或直流电场、磁场已经被用于治疗,有的与中医针灸疗法相结合,在治疗某些常见病上有一定疗效,特别是已开发了多种家用性电磁治疗仪器。但这类技

19、术需要进一步开展生物学效应的研究,以避免盲目性,提高治疗效果,防止对人体的有害影响。,生物医学信号检测与传感器一、定义:生物医学信号检测是对生物体中包含的生命现象、状态、性质及变量和成分等信息的信号进行检测和量化的技术。生物医学传感器是获取各种生物信息并将其转换成易于测量和处理的信号(一般为电信号)的器件,是生物医学信号检测的关键技术。二、信号分类:生物医学信号涉及生物体各层次的生理、生化和生物信号,这些信息以物理量、化学量或生物量变化的形式表现出来,生物电信号:心电、脑电、肌电、眼电等;非电磁生理信号:血压、体温、呼吸、血流、脉搏等;生物化学量信号:血液、尿液、血气等;生物量信号:酶、蛋白、

20、抗体、抗原等。利用生物医学传感器将这些生物信息转换成易于测量和处理的信号,一般为电信号,以便进一步处理,以了解生命活动的规律和本质,为医学研究和临床诊断服务。如血压和血流等信息可以了解心血管系统的状态。,三、信号特点生物医学信号的特点:信号微弱,随机性强,噪声和干扰背景强,动态变化,个体差异大。因此若要把掺杂在噪声和干扰信号中的有用的生物医学信号检测出来,除要求用于检测的传感器系统具有灵敏度高、噪声小、抗干扰能力强、分辨力强、动态特性好之外,对信号提取和分析的手段亦有较高的要求。,四、生物传感器分类:生物医学传感器按被检测量划分为:物理传感器:用于血压、血流、体温、呼吸等生理量测量化学传感器:

21、用于对体液中的各种无机离子测量生物传感器:用于生物体的酶、抗原抗体、激素、神经递质以及核糖核酸等生物活性物质的测量。由于生物系统十分复杂,生物体内的信息丰富,生物信号检测技术十分重要。生物医学传感技术因其关键地位而受到各发达国家的重视。年代以来,美国、日本等国先后将生物传感器列为重点研究项目,年起创办了国际性专门刊物Biosensor,由此推动了生物传感器的研究热潮。生物体内物质互相作用或与外界物质相互作用,常同时伴有物理变化及化学变化,故生物医学信号的检出既可以用物理传感器也可以用化学传感器,化学传感器常受较多干扰,如电极电位漂移、电极表面中毒等,使这类传感器的性能提高受到限制。,光纤化学传

22、感器:与传统的电化学传感器相比,光纤化学传感器()有如下特点:1、光纤及探头均可微型化,生物兼容性好,加之良好的柔韧性和不带电 的安全性,使其更加适合临床医学上的实时、在体检测;2、光纤传输功率损耗小,传输信息容量大,抗电磁干扰,耐高温、高压 防腐,阻燃,防爆,使之可用于远距离遥测和某些特殊环境的分析;3、可采用多波长和时间分辨技术来提高方法的选择性,可同时进行多参 数或连续多点检测,以获得大量信息;4、适当选择化学试剂及其固定方法,可检测多种物质,灵活性很大;5、不需要电位法的参比电极,用廉价光源照射样品,可使成本大大降低;6、在大多数情况下,不改变样品的组成,是非破坏性分析。目前,光纤传感

23、器已成为生物医学分析的一个重要发展方向。,物理传感器:物理传感器主要包括:热敏生物传感器:热敏生物传感器应用范围较广,它具有线路简单、灵敏度高、响应快等优点,适用于对病人进行实时监护。声效应管生物传感器:声效应管生物传感器是今后的重要发展方向之一,高度集成化后,可做成多功能微型传感器。光学生物传感器:光学生物传感器是利用生物发光或生物物质对光波的扰动进行测量,精度高,抗电磁干扰,非常灵敏,但线性范围窄。声波道生物传器:声波道传感器对力学及电学量都很敏感,它具有灵敏度高、易于集成化、微型化等优点,应用范围较广,越来越受到人们的重视。,五、现状: 目前,物理传感器已经实用化,化学传感器也多已达到实

24、用水平,生物传感器大多数尚处于实验开发阶段。 六、发展趋势: 随着微电子、光电子技术的发展,生物医学传感器也将继续向微型化、多参数、实用化发展。微电子和微加工技术的进步,将导致集微传感器、微处理器和微执行器集于一体的微系统的问世与应用。,生物医学信号处理一、定义:生物医学信号一般都是伴随着噪声和干扰的信号,如心电、肌电信号总是伴随着因肢体动作和精神紧张等带来的假象,而且有较强的工频干扰;诱发脑电信号,总是伴随着较强的自发脑电信号;超声回波信号总是伴随着其它反射杂波。此外,信号中无用成份亦应视为检测中的干扰。生物信息处理技术即是研究从被检测的湮没在干扰和噪声中的生物医学信号中提取有用的生物医学信

25、息的方法。,二、内容:生物医学信号的检测与处理的方法包括:在强噪声背景下对微弱生理信号的动态提取、多道生理信号的同步观察与处理、生理信号的时间频率表示、自适应处理、医学专家系统等。生物传感器输出的信号一般十分微弱,需要放大。生物信号的特征部分包含着生物信息,把这些信号的特征识别出来也是生物医学信号处理的主要任务。例如累加平均技术对诱发脑电,希氏束电位、心室晚位等微弱信号的提取;在心电和脑电的体表检测中采用计算机进行多道信号的同步观察与处理,并推求原始信号原的活动;在生理信号的数据压缩中开始引入人工神经网络方法;在医药学特别是中国传统医学中的医学专家系统已在发挥实际效益。,三、前沿方法:生物医学

26、信息处理技术的研究领域广泛,但在发展之中,并存在大量的前沿性课题,均需继续加强系统的、深入的研究,扩大其实用价值。小波变换(WT)被广泛地应用于生物医学信号检测的许多领域。特别是其在时间频率平面具有良好的定位特性。人工神经网络(Artificial Neural Networks,NN)在生物医学领域中的应用迅速扩大。人工神经网络提供了一种与常规分析方法不同的计算方法。一般情况下,操作人员先用某种类型的一组输入输出数据训练系统,让系统学习,以后当把属于这种类型的新数据输入系统时,NN就能用学过的数据推测出而无需编制任何处理这类事件的特殊程序。,虽然NN计算最初的重点是为了更好地了解大脑的活动,

27、但它却已经在许多神经生物学以外的应用领域获得了惊人的成功。已有多种NN模型被提出,其中某些模型已取得了引人注目的成果。在高分子序列分析,包括蛋白质和DNA的NN研究对于医学有潜在的重要性。NN在图像分析及辅助诊断中的应用,近年来受到了重视,用NN对胸部透视数据进行分析,对于鉴别良性与恶性病灶很有帮助,同时还减少了不必要的活组织检查。在单光子发射计算机断层成像(SPECT)中,NN分析甚至比人工看片在病灶探测方面更为准确。在诊断老年痴呆症时NN能和专家相媲美。除图像分析外,NN还被广泛地应用于心血管疾病的诊断及生化和化学分析等领域。,四、应用:生物医学信号检测技术已广泛应用于临床检查、病人监护、

28、医学实验、在体控制、人工器官和运动医学等领域,并成为生物医学工程研究各领域的共用性技术。在各方面的应用中,计算机发挥了重要的作用。例如,在心电和脑电的体表检测中,计算机对多种生理信号进行同步观察与处理,以利于更好地反应信号源的活动。计算机心电图诊断系统已被用户所接受,成为知识处理在医疗卫生领域内为数不多的几个成功应用的例子之一,在门诊检查、基础护理、职业病防治、人口筛选和流行病研究等领域得到一定的应用。虽然目前的心电图诊断系统还比不上专业医生的水平,但心电图的自动分析仍有改进的余地,研究人员正从不同的着重点对诊断程序作进一步的改进,如:利用每一心跳中有用的信息;综合不同程序的结果;吸收心电学其

29、它领域的知识;采用非心电图的数据;利用记录完备的心电数据来评估心电图诊断程序等。,医学图像技术一、定义:从显微镜技术到CT、核磁共振以及各种内窥镜,医学图像一直是医学信息的主要来源。医学图像技术包括医学成像技术和图像处理技术。医学成像是把生物体中的有关信息以图像形式提取并显示出来。以成像的手段来分有X线成像、超声成像、磁共振成像、放射性核素成像等;以图像所包含的信息种类来分有形态学成像、成分成像和功能成像。图像处理则是对已获得的医学图像进行分析、识别、分割、解释、分类以及作三维重建与显示,其目的是把获得的医学图像的某些部分增强,或提取某些特征,为医生提供感兴趣的信息。成像与图像处理技术有时是结

30、合成一体的。,医学图像具有直观、形象和信息量丰富的特点,便于观测和储存,因而发展十分迅速,在现代医学临床诊断中已占越来越重要的地位。各种医学图像设备的产值也已在医疗装备总产值中占有重要份额,并成为医院诊断水平和装备现代化程度的重要标志。,二、医学图像技术种类: 医学图像技术种类很多,传统的显微图像、x线射线图像和内窥镜图像技术得到不断发展;与计算机技术相结合的超声医学图像、x线计算机断层图像(x线CT)、磁共振图像(MRI)和放射性核素图像等也已得到迅速发展和普及应用;热成像、微波成像、电阻抗成像等技术亦在开发或研究之中,有的已形成产品。 B型超声成像技术已经普及应用,彩色超声多普勒血流成像技

31、术也已使用并日趋完善; x线CT已发展到第五代,扫描速度有了很大提高; MRI的磁体重量不断减轻,并在血流成像和波谱分析方面取得显著进展; 放射性核素成像可获得组织化学及功能性图像; 应用计算机的显微图像技术已成为进行细胞和分子水平研究的重要手段。,三、前沿课题:今后的重要课题是:提高已有成像技术的成像速度和分辨力;扩展成像功能,特别是用于体内化学成份和生理功能的检查;努力降低成像设备的成本;提高图像质量。此外,保证足够的图像质量和观测精度的三维重建理论与技术的研究,也是受到重视的课题。医学图像处理方法很多。基于临床知识、解剖学知识、成像技术知识和统计学知识等知识的综合运用,使图像处理技术发展

32、迅速。此外,模糊处理技术、人工神经网络等技术在医学图像处理中已受到高度重视,三维图像显示技术亦是重要的发展方向。,人工器官 一、定义:当人体器官病伤而不能用常规方法医治时,有可能给病人使用一种人工制造的装置来部分或全部替代病损的自然器官,以补偿、替代或修复自然器官的功能,这样的器件或装置称为人工器官。,二、作用:人工心脏瓣膜、人工血管、人工血液和人工心脏及心脏辅助装置,可补偿血液循环功能;人工关节、人工脊椎、人工骨、人工肌腱和假肢具有支持运动功能;人工肾、人工肝具有血液净化功能;人工肺、人工气管和人工喉具有呼吸辅助功能;人工食管、人工胆管和人工肠具有支持消化功能;人工膀胱、人工输尿管、人工尿道

33、具有排尿辅助功能;人工胰、人工胰岛细胞具有内分泌辅助功能;人工子宫、人工输卵管、人工睾丸、人工阴道和阴茎假体具有生殖辅助功能;心脏起搏器、膈起搏器等具有神经传导功能的辅助作用;人工视觉、人工听觉、人工晶体、人工角膜、人工鼻等具有感觉辅助功能。可以说,除大脑以外,对人体的其他器官都在进行人工器官模拟和替代的研究,其中许多人工器官已不同程度地用于临床,已形成了相当规模的人工器官产业。,三、发展方向:人工器官是生物工程各领域知识和技术的综合体现。这个领域的进展,取决于对自然器官功能的充分了解和诸如生物力学、生物材料学、生物医学传感器和控制系统、生物系统的建模与仿真等各领域的进步。离开生物相容性好和坚

34、固耐用的生物材料,离开传感器和控制系统的完善,人工器官是不可能实现的。应该说,各种人工器官都存在许多问题有待解决。其中:心肺器官的辅助或替代是人工器官研究的首要问题;血液净化技术、内分泌功能辅助、感觉功能辅助等人工器官的研究和应用,对严重危害健康的肾功能疾病、糖尿病的治疗和伤残人的康复有重要意义,因此亦是重点发展的方向。,人工器官的研究将愈来愈受到重视并得到不断发展和应用,可以预言,人工器官将成为愈来愈重要的和广泛应用的治疗手段,这将是二十一世纪医学进步的一个显著特点。 与自然器官相比,人工器官仍有一定的差异,大多数人工器官不能完全替代自然器官。随着自然器官移植的进展,人工器官作为自然器官移植的过渡,仍有一定的价值。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医学治疗 > 基础医学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报