1、华南理工大学网络教育学院离散数学练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。q:派小李去开会。则命题:“派小王或小李中的一人去开会” 可符号化为: (pq) (pq) 。(2)设 A,B 都是命题公式,AB ,则 AB 的真值是 T 。(3)设:p:刘平聪明。q:刘平用功。在命题逻辑中,命题:“刘平不但不聪明,而且不用功” 可符号化为: p q 。(4)设 A , B 代表任意的命题公式,则蕴涵等值式为A BA B 。(5)设, p:径一事; q:长一智。在命题逻辑中,命题:“不径一事,不长一智。 ” 可符号化为: pq 。(6)设 A , B 代表任意的命题公式,则德 摩
2、根律为(A B) A B) 。(7)设, p:选小王当班长; q:选小李当班长。则命题:“选小王或小李中的一人当班长。 ” 可符号化为: (pq) (pq) 。(8)设, P:他聪明;Q:他用功。在命题逻辑中,命题:“他既聪明又用功。 ” 可符号化为: P Q 。(9)对于命题公式 A,B,当且仅当 A B 是重言式时,称“A 蕴含B”,并记为 AB。(10)设:P:我们划船。Q:我们跑步。在命题逻辑中,命题:“我们不能既划船又跑步。 ” 可符号化为: (P Q) 。(11)设 P , Q 是命题公式,德摩根律为:(P Q) P Q) 。(12)设 P:你努力。Q:你失败。在命题逻辑中,命题:
3、“除非你努力,否则你将失败。 ” 可符号化为: PQ 。(13)设 p:小王是 100 米赛跑冠军。q:小王是 400 米赛跑冠军。在命题逻辑中,命题:“小王是 100 米或 400 米赛跑冠军。 ” 可符号化为: p q 。(14)设 A,C 为两个命题公式,当且仅当 AC 为一重言式时,称 C 可由 A 逻辑地推出。二判断题1. 设 A,B 是命题公式,则蕴涵等值式为 ABAB。 ( )2. 命题公式pqr 是析取范式。 ( )3. 陈述句“x + y 5” 是命题。 ( )4. 110 (p=1,q=1, r=0)是命题公式 (pq)r)q 的成真赋值。 ( )5. 命题公式 p(pq)
4、 是重言式。 ( )6. 设 A,B 都是合式公式,则 ABB 也是合式公式。 ( )7. A(BC)( AB)(AC)。 ( )8. 陈述句“我学英语,或者我学法语” 是命题。 ( )9. 命题“如果雪是黑的,那么太阳从西方出”是假命题。 ( )10. “请不要随地吐痰!” 是命题。 ( )11. P Q P Q 。 ( )12. 陈述句“如果天下雨,那么我在家看电视” 是命题。 ( )13. 命题公式(P Q)(RT)是析取范式。 ( )14. 命题公式 (PQ) R (PQ) 是析取范式。 ( )三、选择题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的 内。1设:
5、P:天下雪。 Q:他走路上班。则命题“只有天下雪,他才走路上班。”可符号化为 (2) 。(1)PQ(2)Q P(3) Q P(4)Q P2(1 ) 明年国庆节是晴天。(2 ) 在实数范围内, x+y 3。 (3 ) 请回答这个问题!(4 ) 明天下午有课吗?在上面句子中,是命题的只有 (1 ) 。3命题公式 A 与 B 是等值的,是指 (4 ) 。(1) A 与 B 有相同的命题变元(2) AB 是可满足式(3) AB 为重言式(4) AB 为重言式4(1 ) 雪是黑色的。(2 ) 这朵花多好看呀!。 (3 ) 请回答这个问题!(4 ) 明天下午有会吗?在上面句子中,是命题的是 (1 ) 。5
6、设:P:天下大雨。 Q:他乘公共汽车上班。则命题“只要天下大雨,他就乘公共汽车上班。 ”可符号化为 (2) 。(1)QP(2)P Q(3) Q P(4)Q P6设:P:你努力;Q:你失败。则命题“除非你努力,否则你将失败。 ”在命题逻辑中可符号化为 (3) 。(1)QP (2)P Q(3) P Q (4)Q P7(1 ) 现在开会吗?(2 ) 在实数范围内, x+y 5。 (3 ) 这朵花多好看呀 !(4 ) 离散数学是计算机科学专业的一门必修课。在上面语句中,是命题的只有 (4 ) 。8设:P:天气好。Q:他去郊游。则命题“如果天气好,他就去郊游。 ”可符号化为 (1) (1)PQ (2)Q
7、 P(3) Q P ( 4)Q P9下列式子是合式公式的是 (2) 。(1) (P Q) (2) (P (Q R) )(3) (P Q) (4) Q R10 (1)1101110 (2) 中国人民是伟大的。 (3) 全体起立! (4) 计算机机房有空位吗?在上面句子中,是命题的是 (2) 。11 设:P:他聪明;Q:他用功。则命题“他虽聪明但不用功。 ”在命题逻辑中可符号化为 (3) 。(1)P Q (2)P Q(3)P Q (4)P Q12 (1 ) 如果天气好,那么我去散步。 (2 ) 天气多好呀! (3 ) x=3。 (4 ) 明天下午有会吗?在上面句子中 (1 ) 是命题。13 设:P
8、:王强身体很好;Q:王强成绩很好。命题“王强身体很好,成绩也很好。 ”在命题逻辑中可符号化为 (4) 。(1)P Q (2)P Q(3)P Q (4)P Q四、解答题1设命题公式为(pq)(qp) 。 (1)求此命题公式的真值表;(2)给出它的析取范式;(1)p q p pq qp (pq)(q p) T T F T F FT F F T T TF T T T T TF F T F T T(2) (pq) (qp)( pq)(qp)(pq)( q p)( pq)q p2设命题公式为(p q )(p r) 。 (1)求此命题公式的真值表;(2)给出它的析取范式;(1)p q r pq pr (p
9、 q)(p r ) T T T T T TT T F T T TT F T F T FT F F F T FF T T T T TF T F T F FF F T T T TF F F T F F(2) (p q)(p r)(pq)(p r)(pq)p )(pq)r)(pp ) (qp)(pr) (qr) (qp)(pr) (qr)3设命题公式为 ( Q (P Q)) P。 (1)求此命题公式的真值表;(2)求此命题公式的析取范式;(1)P Q Q PQ P Q (PQ) (Q(P Q))PT T F T F F TT F T F F F TF T F T T F TF F T T T T T
10、(2)解:( Q (P Q)) P( Q (PQ) ) P( Q (PQ) ) P( Q (PQ) ) PQ (P Q) P4完成下列问题 求命题公式(P(QR) )S 的析取范式。解:(P( QR ) )S(P(QR) ) S( P(QR) ) S( P(QR) )SP(QR) SP(QR)S5设命题公式为(P ( P Q) ) Q。 (1)求此命题公式的真值表;(2)求此命题公式的析取范式;(1)P Q PQ P (PQ) (P (P Q) ) QT T T T TT F F F TF T T F TF F T F T(2)解:(P( PQ) )Q(P(P Q) )Q( P(P Q) )Q
11、( P(P Q) )QP(P Q)QP(P Q)Q6设命题公式为(P Q) P) Q。 (1)求此命题公式的真值表;(2)给出它的析取范式;(1)P Q PQ P (PQ)P (PQ)P )QT T T F F TT F T F F TF F F T F TF T T T T T(2)解:(P Q)P ) Q( P Q)P)Q( (P Q)(P ) )QPQ)P QT7用直接证法证明 前提:P Q,P R,Q S结论:S R证明: 1)PQ P2) PQ T 1) E3)QS P4)PS T 2) 3)I5)SP T 4) E6)PR P7)SR T 5)6)I8)SR T 7)E8用直接证法
12、证明 前提:P (Q R),S Q,P,S。结论:R证明: 1)P (Q R ) P2) P P3)(Q R) T 2)3)I4)S Q P 5)S P 6) Q T 4)5)I7)R T 3)6)E第二章谓词逻辑一填空题(1)若个体域是含三个元素的有限域a,b,c,则xA(x) A(a) A(b) A(c) (2)取全总个体域,令 F(x):x 为人,G(x):x 爱看电影。则命题“没有不爱看电影的人。 ”可符号化为_( x(F(x) G(x)_。(3)若个体域是含三个元素的有限域a,b,c,则xA(x) A(a) A(b) A(c) 。(4)取全总个体域,令 M(x):x 是人,G(y):
13、y 是花, H(x,y):x 喜欢 y。则命题“有些人喜欢所有的花。 ”可符号化为 x(M(x) (y(G(y) H(x,y)。(5)取个体域为全体人的集合。令 F(x):x 在广州工作,G(x):x 是广州人。在一阶逻辑中,命题“在广州工作的人未必都是广州人。 ”可符号化为_x(F(x) G(x)_。(6)P(x):x 是学生,Q(x) :x 要参加考试。在谓词逻辑中,命题:“每个学生都要参加考试” 可符号化为: x(P(x) Q(x) 。(7)M (x): x 是人,B(x ):x 勇敢。则命题“有人勇敢,但不是所有的人都勇敢”谓词符号化为 _x(M(x) B(x) x(M(x) B(x)
14、_。(8)P(x):x 是人,M(x ):x 聪明。则命题“尽管有人聪明,但不是一切人都聪明”谓词符号化为 _x(P(x ) M(x) x(P(x) M(x)_。(9)I( x):x 是实数,R(x) :x 是正数,N(x):x 是负数。在谓词逻辑中,命题:“任何实数或是正的或是负的” 可符号化为: x(I(x) (R(x) N(x) 。(10)P(x): x 是学生,Q(x) :x 要参加考试。在谓词逻辑中,命题:“每个学生都要参加考试” 可符号化为: x(P(x) Q(x) 。(11)令 M(x):x 是大学生, P(y):y 是运动员, H(x, y):x 钦佩 y。则命题“有些大学生不
15、钦佩所有运动员。 ”可符号化为_x(M(x) (y(P(y) H(x,y)_。二判断题1. 设 A,B 都是谓词公式,则x A B 也是谓词公式。 ( )2. 设 c 是个体域中某个元素,A 是谓词公式,则 A(c) xA(x)。 ( )3. xyA(x,y) yxA(x,y) 。 ( )4. xyA(x,y) yxA(x,y) 。 ( )5. 取个体域为整数集,则谓词公式x y(x y = y ) 是假命题。 ( )6. (x)(P(x)Q(x)) (x)(P(x) Q(x)) 。 ( )7. 命题公式 (PQ R) (PQ) 是析取范式。 ( )8. 谓词公式(x)(A (x) B(x,
16、y) R(x) 的自由变元为 x, y。 ( )9. (x)A(x) B)(x) (A(x) B) 。 ( )10. R(x):“x 是大学生。 ” 是命题。 ( )三、选择题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的 内。1设 F(x): x 是火车, G(x):x 是汽车,H( x,y):x 比 y 快。命题“某些汽车比所有火车慢”的符号化公式是 (2) 。(1) y(G(y) x( F(x) H(x,y) ) )(2) y(G(y)x(F(x) H(x,y) ) )(3) x y(G(y)(F(x) H(x,y) ) )(4) y(G(y) x( F(x)H(
17、x,y) ) )2设个体域为整数集,下列真值为真的公式是 (3) 。(1)yx (x y =2)(2)xy(x y =2)(3)xy(x y =2)(4)xy(x y =2)3设 F(x ):x 是人,G (x):x 早晨吃面包。命题“有些人早晨吃面包”在谓词逻辑中的符号化公式是 (4) 。(1) (x) (F(x) G(x) )(2) (x) (F(x) G(x) )(3) (x) (F (x) G(x) )(4) ( x) (F (x ) G(x) )5下列式子中正确的是 (1) 。(1)(x )P(x )( x)P(x) (2)(x )P(x )( x) P(x)(3)(x) P(x)(
18、x) P(x) (4)(x) P(x)(x ) P(x )6下面谓词公式是永真式的是 b) 。a) P(x ) Q(x )b) (x)P(x) (x)P(x)c) P(a) (x )P(x)d) P(a) ( x)P(x)5设 S(x): x 是运动员, J(y):y 是教练员,L (x ,y):x 钦佩 y。命题“所有运动员都钦佩一些教练员”的符号化公式是 c) 。a) x(S(x) y (J (y) L(x,y ) ) )b) x y(S(x) (J(y) L(x,y) ) )c) x(S(x) y(J(y) L(x,y) ) )d) yx(S(x) (J(y) L(x,y) ) )6下列
19、式子是合式公式的是 (2) 。(1) (P Q) (2) (P (Q R) )(3) (P Q) (4) Q R7下列式子中正确的是 (1) 。(1)(x )P(x )( x)P(x) (2)(x )P(x )( x) P(x)(3)(x) P(x)(x) P(x) (4)(x) P(x)(x ) P(x )四、解答题1构造下面推理的证明: 前提: x F( x) y(F(y) G(y) ) R(y) ) , x F( x) 。结论: x R (x) 。证明:(1) x F( x) y(F(y) G(y) ) R(y) ) 前提引入(2) x F( x) 前提引入(3)y(F (y) G(y)
20、 ) R(y) ) (1) (2)假言推理(4)F(c) (2)EI(5)F(c) G(c) (4)附加(6) (F(c) G(c) ) R(c ) (3)UI(7)R (c) (5) (6)假言推理(8) x R (x) (7)EG2在一阶逻辑中构造下面推理的证明 每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。令 F(x):x 喜欢步行,G(x) :x 喜欢坐汽车,H(x):x 喜欢骑自行车。前提: x(F(x) G(x ) ), x(G(x ) H(x ) ), x ( H(x))结论: x ( F(x))证明(1) x
21、( H(x)) 前提引入(2) H(c) (1)EI(3)x(G(x) H(x) ) 前提引入(4)G(c) H(c) (3)UI(5)G(c)(6)x(F(x) G(x ) ) 前提引入(7)F(c ) G(c) (6)UI(8) F (c)(9) x ( F(x)) (8)EG3在命题逻辑中构造下面推理的证明: 如果他是理科学生,他必须学好数学。如果他不是文科学生,他必是理科学生。他没学好数学,所以他是文科学生。令 F(x):x 是理科学生,G(x) :x 学好数学,H(x):x 是文科学生。前提: x(F(x) G(x) ), x( H( x) F(x) ), x (G(x))结论: x
22、 ( H(x)证明(1)x(F(x) G(x) ) 前提引入(2) x ( G(x)) 前提引入(3) x ( F(x)) T(1) (2)I(4)x( H(x) F(x) ) 前提引入(5) x ( H(x) T( 3) (4)I4用直接证法证明: 前提:(x) (C (x) W(x) R(x) ) , (x) ( C(x)Q(x ) )结论:(x) (Q(x )R(x) ) 。推理: 1) (x)(C(x) W(x) R(x) P2) (x)(C(x) Q(x) p3) C(a) Q(a) ES2)4) C(a) W(a) R(a) US1)5) C(a) T3)I6) W(a) R(a)
23、 T4)5)I7) Q(a) T3)I8) R(a) T6)I9) Q(a) R(a) T7)8)I10) (x)(Q(x) R(x) EG9)第三章集合与关系一填空题(1)如果|A|n,那么|AA| n 2 。A 上的二元关系有_ _个。2(2)集合 A 上关系 R 的自反闭包 r(R)=_RI_。(3)设集合 A 上的关系 R 和 S,R=(1,2) , (1,3) , (3,2),S=(1, 3) , (2,1) , (3,2) ,则 SR= (1,2), (2,2), (2,3) 。(4)如果|A|n,那么|P(A)| 2 n 。(5)设集合 A 上的关系 R 和 S,R= ,S=,
24、,则 RS= , , , 。(6)设集合 E=a, b, c,E 的幂集 P(E) _。(7)设 R 是定义在集合 X 上的二元关系,如果对于每个 x, yX,_ _ _ ,则称集合 X 上的关系 R 是对称的。(8)设关系 R 和 S 为,R=, ,S=, ,则 RS =_ _ _ _。(9)设 R 是定义在集合 X 上的二元关系,如果对于每个 x, yX,_ _ _ ,则称集合 X 上的关系 R 是自反的。二判断题1设 A、B、C 为任意的三个集合,则 A(BC)=A(BC)。 ( )2设 S,T 是任意集合,如果 S T = ,则 S = T。 ( )3集合 A=1,2,3,4上的关系,
25、是一个函数。 ( )4集合 A=1,2,3,4上的整除关系是等价关系。 ( )5集合 A 的幂集 P(A)上的包含关系是偏序关系。 ( )6设 A=a, b, c, R AA 且 R=, 则 R 是传递的。 ( )6设 A,B 是任意集合,如果 B ,则 A B A。 ( )7集合 A=1,2,3上的关系,是传递的。 ( )8集合 A=1,2,3,4上的小于关系是等价关系。 ( )9关系x1, x2N, x1+x2,是自反的。 ( )12设 X=1, 2, 3, Y=a, b, c。函数 F=,是双射。 ( )13集合 A 上的关系 R 的自反闭包 r(R)=RI A。 ( )14集合 A 上
26、的偏序关系 R 是自反的、对称的、传递的。 ( )15. 设 A,B 是任意集合,则 A B (A-B) (B-A)。 ( )三、选择题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的 内。1设 A=a, b,c ,B=a,b ,则下列命题不正确的是 a) 。a) AB=a,bb) AB= a ,b c) AB=cd) BA2设 A = a, b, c, d, A 上的关系 R = , , , ,则它的对称闭包为 c) 。a) R = , , , , , , ,b) R = , , , , ,c) R = , , , , , ,d) R = , , , , , ,3对于集
27、合1, 2, 3, 4 上的关系是偏序关系的是 a) 。a) R=, ,b) R=, ,c) R=, ,d) R=, ,4设 A=1,2,3,4,5,B=6 ,7,8,9,10,以下哪个关系是从 A 到B 的单射函数 b) 。a) f =, ,b) f =, ,c) f =, ,d) f =, ,5设 A = a, b, c,要使关系, , , R 具有对称性,则 d) 。a) R = , b) R = , c) R = , d) R = , 6设 S=,1,1,2,则 S 的幂集 P(S)有 (4) 个元素 (1)3 (2)6 (3)7 (4)87设 R 为定义在集合 A 上的一个关系,若
28、R 是 (2) ,则 R 为等价关系 。(1)反自反的,对称的和传递的 (2)自反的,对称的和传递的(3) 自反的,反对称的和传递的 (4)对称的,反对称的和传递的8设 S,T, M 为任意集合,下列命题正确的是 c) 。a) 如果 ST = SM,则 T = Mb) 如果 S-T = ,则 S = Tc) S-T Sd) S S = S9设 A = a, b, c,要使关系, , , R 具有对性,则 (4) 。(1)R = , (2)R = , (3) R = , (4)R = , 10设 A=1,2,3,4,5 ,B=a,b,c,d,e ,以下哪个函数是从 A 到 B的入射函数 b) 。
29、a) F =, ,b) F=,c) F =, ,d) F=,四、解答题1已知偏序集(A,) ,其中 A=a,b,c ,d,e, “”为(a,b) ,(a,c) , (a,d) , (c,e) , (b,e) , (d,e) , (a,e)IA。(1)画出偏序集(A,)的哈斯图。(2)求集合 A 的极大元,极小元,最大元,最小元。(1)(2)集合 A 的极大元是 e,极小元 a,最大元 e,最小元 a。2设 R 是集合 A = 1, 2, 3, 4, 5, 6, 7, 8, 9上的整除关系。 (1) 给出关系 R;(2)画出关系 R 的哈斯图;(3)指出关系 R 的最大、最小元,极大、极小元。
30、(1)R=, , , , , , , , , , , , , , , , , , , , , , (2)(3)关系 R 的无最大,最小元是 1,极大元是 8 和 9,极小元是 1。3设 R 是集合 A = 1, 2, 3, 4, 6, 12上的整除关系。(2) 给出关系 R;(2) 给出 COV A(3) 画出关系 R 的哈斯图;edab c4512 3 768 9(4) 给出关系 R 的极大、极小元、最大、最小元。 (1)R=, , , , , , , , , , , , , , , , , (2) COV A= , , , , (3)(4)关系 R 的极大、最大元是 12,极小元、最小元是
31、 1。第五章代数结构一填空题(1)集合 S 的幂集 P(S)关于集合的并运算 “” 的零元为 _S_。(2)集合 S 的幂集 P(S)关于集合的并运算 “” 的零元为 _。(3)集合 S 的幂集 P(S)关于集合的并运算 “” 的么元为 _。(4)一个代数系统S, * ,其中 S 是非空集合。*是 S 上的一个二元运算,4312612如果 * 在 S 上是封闭的 ,则称代数系统S, * 为广群。二判断题1含有零元的半群称为独异点。 ( )2运算“”是整数集 I 上的普通加法,则群的么元是 1。 ( )三、填空题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的 内。1下列群
32、一定为循环群的是 e) 。e) (运算“”是整数集 I 上的普通加法)f) (R 是实数集, “”是普通乘法)g) (运算“”是有理数集 Q 上的普通加法)h) (P(S)是集合 S 的幂集, “”为对称差)2运算“”是整数集 I 上的普通减法,则代数系统 满足下列性质 (3) 。(1)结合律 (2)交换律 (3)有零元 (4) 封闭性3设 I 是整数集,N 是自然数集,P(S)是 S 的幂集, “,”是普通的乘法,加法和集合的交运算。下面代数系统中 (2) 是群。(1) (2) (3) (4)4下列代数系统不是群的是 (2) 。(1) (运算“”是整数集 I 上的普通加法)(2) (P(S)
33、是集合 S 的幂集, “”为交运算)(3) (运算“”是有理数集 Q 上的普通加法)(4) (P(S)是集合 S 的幂集, “”为对称差)第七章图论一填空题(1)一个无向图 G=(V,E )是二部图当且仅当 G 中无 奇数 长度的回路。(2)任何图(无向的或有向的)中,度为奇数的顶点个数为 偶数 。(3)设 D 是一个有向图,若 D 中任意一对顶点都是相互可达的,则称 D 是_双向连通的_。(4)既不含平行边,也不含环的图称为 简单图 。(5)经过图中 每条边 一次且仅一次并的回路,称为欧拉回路。(6)一棵有 n 个顶点的树含有_n1_边。(7)设 G =(V,E) ,G =(V,E )是两个
34、图,若 V= V 且 E E ,称 G是 G 的生成子图。 (8)经过图中 每个结点 一次且仅一次的回路,称为哈密尔顿回路。二判断题15 个顶点的有向完全图有 20 条边。 ( )2连通无向图的欧拉回路经过图中的每个顶点一次且仅一次。 ( )3图中的初级通路都是简单通路。 ( )4已知 n (n2)阶无向简单图 G 有 n 1 条边,则 G 一定为树。 ( )5n 阶无向完全图 Kn 的每个顶点的度都是 n。 ( )6一个无向图是二部图当且仅当它没有奇数度的顶点。 ( )7任何图都有一棵生成树。 ( )8连通无向图的哈密尔顿回路经过图中的每条边一次且仅一次。 ( )9图中的初级回路都是简单回路
35、。 ( )10任一图 G=(V,E)的顶点的最大度数必小于 G 的顶点数。 ( )11欧拉图一定是汉密尔顿图。 ( )12无向连通图 G 的任意两结点之间都存在一条路。 ( )13根树中除一个结点外,其余结点的入度为 1。 ( )三、选择题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的 内。1下列为欧拉图的是 (4) 。2下列各图为简单图的是 (3) 。3设无向图 G 有 12 条边,已知 G 中 3 度顶点有 6 个,其余顶点的度数都小于 3,则该图至少有 (3) 个顶点。(1)6 (2)8 (3)9 (4) 124下列四个有 6 个结点的图 (3) 是连通图。(1)
36、 (2) (3) (4)5称图 G=为图 G = 的生成子图是指_(3)_.(1)V V (2)V V 且 E E(3)V= V 且 E E (4)V V 且 E E6有向图中结点之间的可达关系是_(2)_。(1) 自反的,对称的 (2) 自反的,传递的(3) 自反的,反对称的 (4) 反自反的,对称的7在下列关于图论的命题中,为真的命题是 d) 。a) 完全二部图 Kn, m (n 1, m 1)是欧拉图b) 欧拉图一定是哈密尔顿图c) 无向完全图 Kn(n3)都是欧拉图d) 无向完全图 Kn(n3)都是哈密尔顿图8下列各图为平面图的是 (3) 。9设 G 为任意的连通的平面图,且 G 有
37、n 个顶点,m 条边,r 个面,则平面图的欧拉公式为 (1) 。(1)n m + r = 2(2)m n + r = 2(3)n + m r =2(4)r + n + m = 210 下列四个图中与其余三个图不同构的图是 (3) 。(1) (2) (3) (4)(1) (2) (3) (4)(1) (2) (3) (4)四、解答题1给定边集:(1,2) , (1,3) , (2,3) , (2,4) , (2,5) , (3,4) ,(3,5) , (4,5),(1) 画出相应的无向图 G(设 G 无孤立点) ;(2) 画出顶点子集 V1 = 2, 3, 4, 5导出的导出子图;(3) 画出图
38、 G 的一棵生成树。 (1) (2)2如图所示带权图,用避圈法(Kruskal 算法)求一棵最小生成树并计算它的13 42 53 42 513 42 5(3)权值。它的权值为:1+2+4+4=113如图所示带权图,用避圈法(Kruskal 算法)求一棵最小生成树,并计算它的权值。 1424它的权值为:1+2+3+5+7=184求带权图 G 的最小生成树,并计算它的权值。 1312它的权值为:1+1+2+3=75给定权为 2,6,3,9,4;构造一颗最优二叉树,并求此最优二叉树的权。1352 72 3 4 6 9591527最优二叉树的权:23+33+42+62+92=536给定权为 1,9,4,7,3;构造一颗最优二叉树,并求此最优二叉树的权。1 3 448915727最优二叉树的权:14+34+43+72+91=517给定权为 2,6,5,9,4,1;构造一颗最优二叉树,并求此最优二叉树的权。 1 2 4 5 6371116927最优二叉树的权:14+24+43+52+62+92=64