收藏 分享(赏)

一元二次函数的图像和性质.doc

上传人:dreamzhangning 文档编号:2630718 上传时间:2018-09-24 格式:DOC 页数:5 大小:340KB
下载 相关 举报
一元二次函数的图像和性质.doc_第1页
第1页 / 共5页
一元二次函数的图像和性质.doc_第2页
第2页 / 共5页
一元二次函数的图像和性质.doc_第3页
第3页 / 共5页
一元二次函数的图像和性质.doc_第4页
第4页 / 共5页
一元二次函数的图像和性质.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1函数 叫做一元二次函数。)0(2acbxy2. 一元二次函数的图象是一条抛物线。3任何一个二次函数 都可把它的解析式配方为顶点式:)(2cxy,abxay4)(2性质如下:(1)图象的顶点坐标为 ,对称轴是直线 。),2(2cabx2(2)最大(小)值 当 ,函数图象开口向上, 有最小值, ,无最大值。0aycy42min 当 ,函数图象开口向下, 有最大值, ,无最小值。ab2ax(3)当 ,函数在区间 上是减函数,在 上是增函数。0a)2,(ab),(当 ,函数在区间上 是减函数,在 上是增函数。 2ab【说明】1.我们研究二次函数的性质常用的方法有两种:配方法和公式法。2无论是利用公式

2、法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴;但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向。二、一元二次函数性质【例 3】求函数 的最小值及图象的对称轴和顶点坐标,并求它的单调区间。962xy【解】 7)3(7222 xx由配方结果可知:顶点坐标为 ,对称轴为 ;、3x当 时, 013xminy函数在区间 上是减函数,在区间 上是增函数。(、 )、【例 4】求函数 图象的顶点坐标、对称轴、最值及它的单调区间。152xy,03)(ab 209)5(43142abc函数图象的顶点坐标为 ,对称轴为)9,1(x当 时,函数取得最大值0503x209mazy函数在区间 上是

3、增函数,在区间 上是减函数。,(),3【点评】要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:(1)配方法;如例 3(2)公式法:适用于不容易配方题目(二次项系数为负数或分数)如例 4,可避免出错。任何一个函数都可配方成如下形式: )0()2(2abcaxy三、二次函数性质的应用【例 5】(1)如果 对于任意实数 都有 ,那么( cbxf2)( t )3()(tftf)(A) (B) )4(1)3(ff )4()1(ff(C) (D) 134【解】 对于一切的 均成立)()(tftfRt 的图像关于 对称x3x又 抛物线开口向上。01a 是 的最小值。)3(fxf,4 )1()

4、(ff(2)如果 对于任意实数 都有 ,则 cbxx2t )2()(tftf)1(f。(用“ ”或“ ”填空)1f【解】 对于一切的 均成立2()tftRt 的图像关于 对称xfx又 抛物线开口向下。01a,)2()( ff【点评】1.当 时,对称轴通过它的最低点(此时函数有最小值),如果这时有一个点0a离图象对称轴越远,则对应的函数值就越大。如例 5(1)中当 所对应的点比当 所1x4x对应的点离对称轴远,所以 时对应的函数值也比较大。1x21.当 时,对称轴通过它的最高点(此时函数有最大值),如果这时有一个点离图象对称轴越远,则对应的函数值就越小。如例 5(2)中当 所对应的点比当所对应的

5、点离对称轴远,所以 对应的函数值也比较小。1x【例 6】求函数 在给定区间 上的最值。52xy5,1【解】 (1)原函数化为 62x 当 时,0aminy又 当 时,155x106)5(2ax(2)原函数可化为: ,图象的对称轴是直线90)3(2y 3x注意到当 时,函数为减函数2x 3141)(min fy【例 7】已知函数 是偶函数,试比较 , , 的2nx)2(f)f)5(f大小。【解】解法一: 是偶函数,1)(2y , 0n12xy 可知函数的对称轴为直线 0又 ,a25 )()2(fff解法二: 是偶函数,31mxy , 0n12y可知 在 上单调递减2x),(又 是偶函数,)(ny

6、 5ff而 25 )()(fff 5三、一元二次函数、一元二次方程的关系。【例 8】求当 为何值时,函数 的图象与 轴(1)只有一个公共点;(2)kkxy42x有两个公共点;(3)没有公共点.【解】令 ,则 的判别式042x02 kacb81642(1)当 ,即 , 时,方程有两个相等的实根,这时图象与 轴816k x只有一个公共点;(2) 当 ,即 , 时,方程有两个不相等的实根,这时图象与轴有两个公共点;x(3) 当 ,即 , 时,方程有两个不相等的实根,这时图象与00k2轴无公共点;同步训练一选择题1二次函数 的值域是( )52xy ( )4, ),4( 4, )4,( 2如果二次函数

7、在区间 上是减函数,在区间 上是增函2mxy)1, 1数,则 ( )m2 -2 10 -103如果二次函数 有两个不相等的实数根,则 的聚值范围是( )3(2mxy m) 0 ),6(),()6,2()6,26,24函数 的最小值是( )321xy-3. 3 .21 .2135函数 具有性质( )42xy开口方向向上,对称轴为 ,顶点坐标为(-1,0) 开口方向向上,对称轴为 ,顶点坐标为(1,0) 开口方向向下,对称轴为 ,顶点坐标为(-1,0) 开口方向向下,对称轴为 ,顶点坐标为(1,0) x9如果函数 ,对于任意实数 都有 ,那么下)(2acbxy t )2()(tftf列选项中正确的是( ) )4(1)(ff )4()1(ff 2 12410若二次函数 有最小值,则实数 ( )12xaya 222若函数 在区间 上是减函数,在区间 是增函数,则 32bxy2,(,(b三解答题1已知二次函数 , (1)指出函数图象的开口方向;(2)当 为何值时42x;(3)求函数图象的顶点坐标、对称轴和最值。0y2.如果二次函数 与 轴至多有一个交点,求 的值。)8()(2kxf xk3已知二次函数 ,21m(1)如果它的图象经过原点,求 的值。(2)如果它的图象关于 轴对称,写出函数的关系式。y(3)如果它的图象关于 轴对称,试比较 。)2(3()2fff、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报