1、模型的建立与估计中的问题及对策,我们已学到了许多有用的计量经济分析方法,如建立模型、估计参数、假设检验、预测、非线性模型的线性化,用虚拟变量将定性因素引入模型等。可是,我们所使用的最小二乘法,以及由此而得到的OLS估计量令人满意的性质,是根据一组假设条件而得到的。在实践中,如果某些假设条件不能满足,则OLS就不再适用于模型的估计。在这种情况下,分析方法就需要改变。下面列出实践中可能碰到的一些常见问题:l 误设定(Misspecification 或specification error)l 多重共线性(Multicollinearity)l 异方差性(Heteroscedasticity)l
2、自相关(Autocorrelation)本章将对上述问题作简要讨论,主要介绍问题的后果、检测方法和解决途径。,第一节 误设定采用OLS法估计模型时,实际上有一个隐含的假设,即模型是正确设定的。这包括两方面的含义:函数形式正确和解释变量选择正确。在实践中,这样一个假设或许从来也不现实。我们可能犯下列三个方面的错误:选择错误的函数形式遗漏有关的解释变量包括无关的解释变量 从而造成所谓的“误设定”问题。,一. 选择错误的函数形式这类错误中比较常见的是将非线性关系作为线性关系处理。函数形式选择错误,所建立的模型当然无法反映所研究现象的实际情况,后果是显而易见的。因此,我们应当根据实际问题,选择正确的函
3、数形式。我们在前面各章的介绍中采用的函数形式以线性函数为主,上一章介绍了应变量和解释变量都采用对数的双对数模型,下面再介绍几种比较常见的函数形式的模型,为读者的回归实践多提供几种选择方案。这几种模型是:半对数模型双曲函数模型多项式回归模型,1. 半对数模型半对数模型指的是应变量和解释变量中一个为对数形式而另一个为线性的模型。应变量为对数形式的称为对数-线性模型(log-lin model)。解释变量为对数形式的称为线性-对数模型(lin-log model)。我们先介绍前者,其形式如下:对数-线性模型中,斜率的含义是Y的百分比变动,即解释变量X变动一个单位引起的应变量Y的百分比变动。这是因为,
4、利用微分可以得出:,这表明,斜率度量的是解释变量X的单位变动所引起的应变量Y的相对变动。将此相对变动乘以100,就得到Y的百分比变动,或者说得到Y的增长率。由于对数-线性模型中斜率系数的这一含义,因而也叫增长模型 (growth model)。增长模型通常用于测度所关心的经济变量(如GDP)的增长率。例如,我们可以通过估计下面的半对数模型得到一国GDP的年增长率的估计值,这里t为时间趋势变量。,线性-对数模型的形式如下:与前面类似,我们可用微分得到因此 这表明,上式表明,Y的绝对变动量等于 乘以X的相对变动量。因此, 线性-对数模型通常用于研究解释变量每变动1%引起的因变量的绝对变动量是多少这
5、类问题。,2. 双曲函数模型双曲函数模型的形式为:不难看出,这是一个仅存在变量非线性的模型,很容易用重新定义的方法将其线性化。双曲函数模型的特点是,当X趋向无穷时,Y趋向 ,反映到图上,就是当X趋向无穷时,Y将无限靠近其渐近线(Y= )。双曲函数模型通常用于描述著名的恩格尔曲线和菲利普斯曲线。,3. 多项式回归模型多项式回归模型通常用于描述生产成本函数,其一般形式为:其中Y表示总成本,X表示产出,P为多项式的阶数,一般不超过四阶。多项式回归模型中,解释变量X以不同幂次出现在方程的右端。这类模型也仅存在变量非线性,因而很容易线性化,可用OLS法估计模型。,二. 遗漏有关的解释变量模型中遗漏了对因
6、变量有显著影响的解释变量的后果是:将使模型参数估计量不再是无偏估计量。三. 包括无关的解释变量模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。注 有关上述两点结论的说明请参见教科书P101-102。,四. 解决解释变量误设定问题的原则在模型设定中的一般原则是尽量不漏掉有关的解释变量。因为估计量有偏比增大误差更严重。但如果方差很大,得到的无偏估计量也就没有多大意义了,因此也不宜随意乱增加解释变量。在回归实践中,有时要对某个变量是否应该作为解释变量包括在方程中作出准确的判断确实不是一件容易的事,因为目前还没有行之有效的方法可供使用。尽管如此,还是有一些有助于我们进行判
7、断的准则可用,它们是:,选择解释变量的四条准则1. 理论: 从理论上看,该变量是否应该作为解释变量包括在方程中?2. t检验:该变量的系数估计值是否显著?3. : 该变量加进方程中后, 是否增大?4. 偏倚: 该变量加进方程中后,其它变量的系数估计值是否显著变化?,如果对四个问题的回答都是肯定的,则该变量应该包括在方程中;如果对四个问题的回答都是“否”, 则该变量是无关变量,可以安全地从方程中删掉它。这是两种容易决策的情形。,但根据以上准则判断并不总是这么简单。在很多情况下,这四项准则的判断结果会出现不一致。例如,有可能某个变量加进方程后, 增大,但该变量不显著。,在选择变量的问题上,应当坚定
8、不移地根据理论而不是满意的拟合结果来作决定,对于是否将一个变量包括在回归方程中的问题,理论是最重要的判断准则。如果不这样做,产生不正确结果的风险很大。,在这种情况下,作出正确判断不是一件容易的事,处理的原则是将理论准则放在第一位,再多的统计证据也不能将一个理论上很重要的变量变成“无关”变量。,五. 检验误设定的RESET方法上面给出了选择解释变量的四条准则。可是,有时这些准则不能提供足够的信息使研究人员确信其设定是最恰当的,在这种情况下,可考虑使用一些更正规的检验方法来比较不同估计方程的性质。这类方法相当多,这里就不一一列出,仅介绍拉姆齐(J. B. Ramsey)的回归设定误差检验法(RES
9、ET法)。,RESET检验法的思路RESET检验法的思路是在要检验的回归方程中加进 等项作为解释变量,然后看结果是否有显著改善。如有,则可判断原方程存在遗漏有关变量的问题或其它的误设定问题。直观地看,这些添加的项是任何可能的遗漏变量或错误的函数形式的替身,如果这些替身能够通过F检验, 表明它们改善了原方程的拟合状况,则我们有理由说原方程存在误设定问题。 等项形成多项式函数形式,多项式是一种强有力的曲线拟合装置,因而如果存在误设定,则用这样一个装置可以很好地代表它们。,RESET检验法的步骤拉姆齐RESET检验的具体步骤是: (1) 用OLS法估计要检验的方程,得到(2) 由上一步得到的值 (i
10、=1,2,n),计算 ,然后用OLS法估计:(3) 用F检验比较两个方程的拟合情况(类似于上一章中联合假设检验采用的方法),如果两方程总体拟合情况显著不同,则我们得出原方程可能存在误设定的结论。使用的检验统计量为:,其中:RSSM为第一步中回归(有约束回归)的残差平方和,RSS为第二步中回归(无约束回归)的残差平方和,M为约束条件的个数,这里是M=3。应该指出的是,拉姆齐RESET检验仅能检验误设定的存在,而不能告诉我们到底是哪一类的误设定,或者说,不能告诉我们正确的模型是什么。但该方法毕竟能给出模型误设定的信号,以便我们去进一步查找问题。另一方面,如果模型设定正确,RESET检验使我们能够排
11、除误设定的存在,转而去查找其它方面的问题。,第二节 多重共线性应用OLS法的一个假设条件是;矩阵X的秩=K+1N。 即自变量之间不存在严格的线性关系,观测值个数大于待估计的参数的个数。这两条无论哪一条不满足,则OLS估计值的计算无法进行,估计过程由于数学原因而中断,就象分母为0一样。这两种情况都很罕见。然而,自变量之间存在近似的线性关系则是很可能的事。事实上,在经济变量之间,这种近似的线性关系是很常见的。当某些解释变量高度相关时,尽管估计过程不会中断,但会产生严重的估计问题,我们称这种现象为多重共线性。解释变量间存在严格线性相关关系时,称为完全的多重共线性。,一 定义在实践中,若两个或多个解释
12、变量高度线性相关,我们就说模型中存在多重共线性。二 后果1. 不改变参数估计量的无偏性;事实上,对于不完全多重共线性,参数估计量仍为BLUE。 这是因为,尽管解释变量之间存在多重共线性,但并不影响扰动项和解释变量观测值的性质,故仍有,2. 但各共线变量的参数的OLS估计值方差很大,即估计值精度很低。(BLUE表明在各线性无偏估计量中方差最小,但不等于方差的值很小。)3 由于若干个X变量共变,它们各自对因变量的影响无法 确定。4. 各共线变量系数估计量的t值低,使得犯第类错误的可能性增加。由于各共线变量的参数的OLS估计值方差大,因而系数估计量的t值低,使得我们犯第类错误(接受错误的原假设H0:
13、 j=0)的可能性增加,容易将本应保留在模型中的解释变量舍弃了。,三 多重共线性的判别和检验 1根据回归结果判别判别是否存在多重共线性的最简单方法是分析回归结果。如果发现: 系数估计值的符号不对;某些重要的解释变量t值低,而R2不低;当一不太重要的解释变量被删除后,回归结果显著变化。则可能存在多重共线性。其中上述第二种现象是多重共线性存在的典型迹象。此方法简便易行,因而是实践中最常用的方法,缺点是无 法确诊。,2使用相关矩阵检验统计软件一般提供各解释变量两两之间的相关系数矩阵,如发现某些相关系数高(绝对值高于0.8或0.90),则表明多重共线性存在。但即使解释变量两两之间的相关系数都低,也不能
14、排除存在多重共线性的可能性。3通过条件指数检验条件指数(Condition index)或条件数Condition number)是XX矩阵的最大和最小特征根之比的平方根,条件指数高,表明存在多重共线性。至于什么程度算高,也没有一个绝对的标准。通常认为大于10即存在多重共线性,大于30表明存在严重多重共线性。大多数统计软件提供此检验值。,4. 使用VIF检验VIF是方差膨胀因子的英文 (Variance Inflation Factors) 缩写, 这是一种比较正规的检验方法。该方法通过检查指定的解释变量能够被回归方程中其它全部解释变量所解释的程度来检测多重共线性。,方程中每个解释变量有一个V
15、IF,该VIF是关于多重共线性使相应的系数估计值的方差增大了多少的一个估计值。高VIF表明多重共线性增大了系数估计值的方差,从而产生一个减小了的t值。,VIF检验的具体步骤如下:设原方程为:Y = 0 + 1X1 + 2X2 + + kXk + u 我们需要计算K个不同的VIF,每个Xi一个。为指定Xi计算VIF涉及以下三步: (1)Xi 对原方程中其它全部解释变量进行OLS回归,例如,若i =1,则回归下面的方程:X1 = 1 + 2X2 + 3X3 + + kXk +v(2)计算方差膨胀因子(VIF):其中Ri2是第一步辅助回归的决定系数。,(3)分析多重共线性的程度VIF越高, 多重共线
16、性的影响越严重。 由于没有VIF临界值表,我们只能使用经验法则:若 ,则存在严重多重共线性。也有人建议用VIF10作为存在严重多重共线性的标准, 特别在解释变量多的情形应当如此。需要指出的是,所有VIF值都低,并不能排除严重多重共线性的存在,这与使用相关系数矩阵检验的情况相似。,四 解决多重共线性的方法思路;加入额外信息。 具体方法有以下几种:增加数据对模型施加某些约束条件删除一个或几个共线变量将模型适当变形,1增加数据多重共线性实质上是数据问题,因此,增加数据就有可能消除或减缓多重共线性,具体方法包括增加观测值、利用不同的数据集或采用新的样本。,例:需求函数Yt = 1+2Xt+3Pt+ u
17、t在时间序列数据中,收入(X)和价格(P)往往是高度相关的,用时间序列数据估计往往会产生多重共线性。然而,在横截面数据中,则不存在这个问题,因为某个特定时点P为常数。如果取一横截面样本(如从5000个家庭取得的数据),则可用来估计Yi = 1+2Xi+ ui 然后将得到的估计值 作为一个约束条件(2 = )施加于时间序列数据的回归计算中,即估计Yt - Xt =1+3Pt+ ut ,得到 , 。,2对模型施加某些约束条件在存在多重共线性的模型中,依据经济理论施加某些约束条件,将减小系数估计量的方差,如在CobbDouglas生产函数中加进规模效益不变的约束,可解决资本和劳动的高度相关而引起的多
18、重共线性问题。3删除一个或几个共线变量这样做,实际上就是利用给定数据估计较少的参数,从而降低对观测信息的需求,以解决多重共线性问题。删除哪些变量,可根据假设检验的结果确定。应注意的是,这种做法可能会使得到的系数估计量产生偏倚,因而需要权衡利弊。,4将模型适当变形 例1某商品的需求函数为:其中:Q = 需求量, X = 收入, P = 该商品的价格, P* = 替代商品的价格在实际数据中,P和P*往往呈同方向变动,它们之间高度相关,模型存在多重共线性。如果我们仅要求在知道两种商品的相对价格变动时,对需求量进行预测,则可将需求函数变为:就可以解决多重共线性问题。,例2有滞后变量的情形Yt = 1+
19、2Xt+3 Xt-1 + ut一般而言,Xt和Xt 1往往高度相关,将模型变换为:Yt = 1+2(Xt - Xt 1)+3Xt -1+ ut其中3=3 +2经验表明:Xt和Xt 1的相关程度要远远小于和Xt和Xt 1的相关程度,因而这种变换有可能消除或减缓多重共线性。,5主成分法可将共线变量组合在一起形成一个综合指数(变量),用它来代表这组变量。构造综合指数的最常用方法是主成分法。主成分法的计算相当复杂,这里不做介绍。,同学们需要了解的是,主成分的特点是,各主成分之间互不相关,并且,用很少几个主成分就可以解释全部X变量的绝大部分方差,因而在出现多重共线性时,可以用主成分替代原有解释变量进行回
20、归计算,然后再将所得到的系数还原成原模型中的参数估计值。,五. 处理多重共线性问题的原则1. 多重共线性是普遍存在的,轻微的多重共线性问题可不 采取措施。,3. 如果模型仅用于预测,则只要拟合好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不 影响预测结果。,2. 严重的多重共线性问题,一般可根据经验或通过分析回归结果发现。如影响系数的符号,重要的解释变量t 值很低。要根据不同情况采取必要措施。,第三节 异方差性回顾我们应用OLS法所需假设条件,其中大部分是有关扰动项的统计假设,它们是:(1)E(ut)=0, t=1,2,n. 扰动项均值为0 (2)Cov(ui,uj) = E
21、(uiuj) =0, ij. 扰动项相互独立 (3)Var(ut) = E(ut) = 2 , t=1,2,n. 常数方差 (4)ut N(0,2). 正态性对于(1),我们可论证其合理性。而第(4)条,也没有多大问题。大样本即可假定扰动项服从正态分布。而对于(2),(3)两条,则无法论证其合理性。实际问题中,这两条不成立的情况比比皆是。下面即将讨论它们不成立的情况,即异方差性和自相关的情形。,一 异方差性及其后果1 定义若Var(ut) = = 常数的假设不成立,即Var(ut) = 常数,则称扰动项具有异方差性。,2 什么情况下可能发生异方差性问题?解释变量取值变动幅度大时,常数方差的假设
22、往往难以成立。异方差性主要发生在横截面数据的情况,时间序列问题中一般不会发生,除非时间跨度过大。,例:Yi = +Xi+ ui 其中:Y=指定规模和组成的家庭每月消费支出X=这样的家庭的每月可支配收入设X的N个观测值取自一个家庭可支配收入的横截面样本。某些家庭接近于勉强维持生存的水平,另一些家庭则有很高的收入。不难设想,低收入家庭的消费支出不大可能离开他们的均值E(Y)过远,太高无法支持,太低则消费将处于维持生存的水平之下。因此,低收入家庭消费支出额的波动应当较小,因而扰动项具有较小的方差。而高收入家庭则没有这种限制,其扰动项可能有大得多的方差。这就意味着异方差性。,3异方差性的后果(1)参数
23、估计量不再具有最小方差的性质异方差性不破坏OLS估计量的无偏性,但不再是有效的。 事实上,异方差性的存在导致OLS估计量既不是有效的,也不具有渐近有效性。(2)系数的显著性检验失去意义更为严重的是,在异方差性的情况下, 矩阵主对角元素不再是OLS估计量方差的无偏估计量,从而导致系数的置信区间和假设检验结果不可信赖。例如在双变量模型中,如果 倾向于低估 的真实方差,则置信区间可能要比实际的窄,给我们一个错误信息,好象得到 的点预测值很精确。,二 异方差性的检验异方差性后果的严重性意味着我们在实践中必须了解是否存在异方差性。常用的检验方法有: 斯皮尔曼等级相关检验法(Spearman Rank R
24、elation test)戈德弗尔德匡特检验法(Goldfeld Quandt test)格里瑟检验法(Glesjer test)帕克检验法(Park test)怀特检验法 (Whites General Heteroscedasticity test),1斯皮尔曼等级相关检验法思路:将异方差性与扰动项u和某个解释变量X之间的相关程度挂钩(即 与 Xt 的大小有关),从而将对异方差性的研究转化为对ut与Xt的相关程度的研究。由于扰动项无法观测,因而用残差代替之,转化为对et与Xt的相关程度的研究,若et与Xt高度相关,则可推断异方差性存在。在此无法用相关系数来检验,因为et与Xt的相关系数恒等
25、于0:因而改用Xt和et的等级相关系数检验et和Xt的相关程度。,等级相关系数的计算步骤(1)将两变量的相应观测值分别按升序(或降序)排序,所得到的序号即为等级。(2)计算两变量各观测值相应的等级之差dt.(3)计算等级相关系数,例:等级相关系数的计算 假设我们有Xt和et如下:Xt 25, 40, 52, 58, 65et 1.6,-2.9,-10.7,14.8, 5.7 我们有 et 1.6, 2.9, 10.7, 14.8, 5.7Xt的等级 et的等级 dt 1 1 02 2 03 4 -14 5 -15 3 2 r = 1 (6*6)/(5*24) = 1 - 0.3 = 0.7计算
26、出等级相关系数后,就可判断异方差性是否存在。若相关系数绝对值高,则存在异方差性。对于多个解释变量的情况,可分别计算et与各解释变量的等级相关系数进行检验。,2.戈德弗尔德匡特检验法 基本思路:假定 随Yt的数值大小变动。 检验步骤: (1)将数据分为三组:小Yt值组,中Yt值组,大Yt值组(数据项大致相等) (2)对小Yt值组估计模型,给出(3)对大Yt值组估计模型,给出,(4) H0:H1: (或 )检验统计量为F0 = F(n3-k-1, n1-k-1)若F0Fc,则拒绝H0,存在异方差性。例:S=+Y + u 其中:S=储蓄 Y=收入设 195160年, =0.01625197079年,
27、 =0.9725F0 = 0.9725/0.01625=59.9查表得: d.f.为(8,8)时,5% Fc=3.44F0Fc 因而拒绝H0。结论:存在异方差性。,三 广义最小二乘法 1消除异方差性的思路基本思路:变换原模型,使经过变换后的模型具有同方差性,然后再用OLS法进行估计。对于模型Yt = 0+1X1t+k Xkt+ ut (1)若扰动项满足 E(ut) = 0,E(uiuj) = 0, ij,但E(ut2) = 常数.也就是说,该模型只有同方差性这一条件不满足,则只要能将具有异方差性的扰动项的方差表示成如下形式:Var(ut) = ,t=1,2,n其中 为一未知常数, 表示一组已知
28、数值,则用t去除模型各项,得变换模型:,(2)由于所以变换后的扰动项的方差为常数,可以应用OLS法进行估计,得到的参数估计量为BLUE。但这里得到的OLS估计量是变模后模型(2)的OLS估计量。对于原模型而言,它已不是OLS估计量,称为广义最小二乘估计量(GLS估计量)。,2 广义最小二乘法(Generalized least squares)下面用矩阵形式的模型来推导出GLS估计量的一般计算公式。设GLS模型为 Y=X+u (1)满足 E(u)= 0,E(uu)=2, X 非随机,X的秩=K+1n, 其中为正定矩阵。(注: 正定矩阵是和单位矩阵合同的矩阵;正定矩阵所有顺序主子式均大于0。),
29、根据矩阵代数知识可知,对于任一正定矩阵,存在着一个满秩(非退化,非奇异)矩阵P,使得用P-1左乘原模型(1)(对原模型进行变换):令 Y* = P-1Y ,X* = P-1X,u* = P-1u,得到Y*= X*+ u* (2)下面的问题是,模型(2)的扰动项u*是否 满足OLS法的基本假设条件。,我们有,这表明,模型(2)中的扰动项u*满足OLS法的基本假设,可直接用OLS估计,估计量向量这就是 的广义最小二乘估计量(GLS估计量)的公式,该估计量是BLUE。从上述证明过程可知,我们可将GLS法应用于为任意正定矩阵的情形。,如果只存在异方差性,则其中我们显然有,四 广义最小二乘法的应用 1根
30、据实际问题确定矩阵应用GLS法的关键是确定矩阵。对于仅存在异方差性的实际问题,矩阵是一个对角矩阵,即现在的问题是, 的值为已知这一假设是否现实,也就是我们能否根据实际问题,提出有关扰动项方差的某种合理的设想(即估计矩阵),使得( 为未知常数, 为已知数值)下面通过例子说明这一问题。,例1 Yt = 1+2Xt+ ut t=1,2,n.其中 Y=家庭消费支出 X=家庭可支配收入我们在前面已分析过,高收入家庭有较大的扰动项方差,因此不妨假定扰动项方差与可支配收入成正比,即Var(ut)=Xt , t=1,2,n.式中是一未知常数,由于Xt为已知,相当于 ,而相当于 ,因此应用GLS法,即可得出的G
31、LS估计量。,2格里瑟检验法(Glesjer test)在上例中我们假设扰动项方差与解释变量的取值成正比,这种假设是否真正合理呢?根据经验和分析做出的这种假设,虽然有一定道理,但未免显得过于武断,这方面还可做一些比较细致的工作。Glesjer检验法不仅可检验异方差性的存在,还可用于提供有关异方差形式的进一步信息,对于确定矩阵很有用,下面我们扼要说明格里瑟检验法的步骤。格里瑟检验法的思路是假定扰动项方差与解释变量之间存在幂次关系,方法是用 对被认为与扰动项方差有关的解释变量回归,确定 和该解释变量的关系。由于与该解释变量之间关系的实际形式是未知的,因此需要用该解释变量的不同幂次进行试验,选择出最
32、佳拟合形式。,具体步骤如下:(1)因变量Y对所有解释变量回归,计算残差et (t=1,2,n) (2) 对所选择解释变量的各种形式回归,如然后利用决定系数,选择拟合最佳的函数形式。 (3)对1进行显著性检验,若显著异于0,则表明存在异方差性,否则再试其它形式。,格里瑟检验法的最大优点是能够提供有关异方差性形式的信息,为GLS法提供矩阵。缺点是太繁琐。因此建议用其它方法检验异方差性的存在,然后再用格里瑟法确定异方差性的具体形式,进而应用GLS法。例2 Yt = 1+2X1t+k Xkt+ ut假设我们根据经验知道扰动项方差与Xjt有关,并用格里瑟法试验,得出: 则,3加权最小二乘法对于仅存在异方
33、差性的问题,其矩阵是一个对角矩阵,即在这种情况下应用广义最小二乘法,也就是在原模型两端左乘矩阵,变换原模型,再对变换后的模型应用普通最小二乘法进行估计。,这种作法实际上等价于在代数形式的原模型Yt = 0+1X1 t+k X k t+ u t 的两端除以 t,得变换模型:,这种作法相当于在回归中给应变量和解释变量的每个观测值都赋予一个与相应扰动项的方差相联系的权数,然后再对这些变换后的数据进行OLS回归,因为这种作法相当于每个观测值都以相应扰动项的标准差的估计值 的倒数(即 )为权数,因而被称为加权最小二乘法(WLS法, Weighted Least Squares)。,加权最小二乘法是广义最
34、小二乘法的一个特例,在矩阵为对角矩阵这种特殊情形下,我们既可以直接应用矩阵形式的广义最小二乘估计量公式得到GLS估计值,亦可避开矩阵运算,采用加权最小二乘法得到其WLS估计值,两者结果完全相同,无论你称之为GLS估计值还是WLS估计值,二者是一码事。,例: (1)其中:Y=R&D支出,X=销售额采用美国1988年18个行业的数据估计上述方程,结果如下(括号中数字为t值):这里是横截面数据,由于行业之间的差别,可能存在异方差性。,应用格里瑟法试验,得到异方差性形式为:,将原模型(1)的两端除以 ,得用OLS法估计(2)式,结果如下(括号中数字为t值):与(1)式的结果比较,两个方程斜率系数的估计
35、值相差不大,但采用WLS法估计的比直接用OLS法估计的系数更为显著,这表明OLS法高估了X系数的标准差。,第四节 自相关 一 定义若Cov(ui , uj) = E(uiuj) =0, ij不成立,即线性回归模型扰动项的方差协方差矩阵的非主对角线元素不全为0,则称为扰动项自相关,或序列相关(Serial Correlation)。二 自相关的原因及后果 1原因 自相关主要发生在时间序列数据的情形,因而亦称为序列相关,主要有以下两种原因: (1)冲击的延期影响(惯性)在时间序列数据的情况下,随机冲击(扰动)的影响往往持续不止一个时期。例如,地震、洪水、罢工或战争等将在发生期的后续若干期中影响经济
36、运行。,微观经济中也与此类似,如一个工厂的产量,由于某种外部偶然因素的影响(如某种原材料的供应出了问题),该厂某周产量低于正常水平,那么,随后的一周或几周中,由于这种影响的存在或延续,产量也很可能低于正常水平(即扰动项为负)。不难看出,观测的周期越长,这种延期影响的严重性就越小,因此,年度数据比起季度数据来,序列相关成为一个问题可能性要小。(2)误设定如果忽略了一个有关的解释变量,而该变量是自相关的,则将使扰动项自相关,不正确的函数形式也将导致同样后果。在这些情况下,解决的方法是纠正误设定。本章后面将介绍的纠正自相关的方法都不适用于这种情况的自相关。,2后果自相关的后果与异方差性类似。(1)在
37、扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。,三 自相关的检验 1检验一阶自相关的德宾沃森检验法(DurbinWatson test) (1)一阶自相关自相关的最简单模式为:ut = ut-1 + t, t=1,2,n.其中称为自相关系数(-11),这种扰动项的自相关称为一阶自相关,即扰动项仅与其前一期的值有关。我们有:0 正自相关0 负自相关=0 无自相关,在一阶自相关模式中,假定t具有以下性质:E(t) = 0
38、, E(t) = 2 = 常数,E(ij)=0, ij, t服从正态分布。在计量经济学中,具备上述性质的量称为白噪声(White noise),表示为t= White noise或t= 白噪声,(2)德宾沃森检验法(DurbinWatson d test)统计软件包和研究报告在提供回归结果时通常都给出DW(或d)统计量的值,该统计量是从OLS回归的残差中计算得来的,它被用于一阶自相关的检验,计算公式为:DW和一阶自相关系数的估计值之间存在以下近似关系:DW 2 - 2 由于 -1 1,因而0 DW 4。 不难看出,直观判断准则是,当DW统计量接近2时,则无自相关,DW值离2越远,则自相关存在的
39、可能性越大。,DW检验的缺陷我们当然期望能够有一张能够给出相应的n、k和值下各种DW临界值的表(就象t检验,F检验一样),使得我们可以按常规假设检验那样根据临界值作出判断。这样的表是根据检验统计量在原假设成立的情况下的抽样分布编制的。不幸的是,DW统计量的分布依赖于解释变量的具体观测值(即依赖于X矩阵)。 因此不象t、F检验那样,有一张能够给出DW临界值的表。为解决这一问题,德宾和沃森证明,DW统计量的真实分布位于两个极限分布之间,这两个分布分别称为下分布和上分布,如下图所示:,概率 密度 下分布 上分布0 A B C D DW值,每个分布的95%临界水平用A,B,C,D表示。,现假设DW统计
40、量的值位于A的左边,则不管这种情况下的DW统计量服从何种分布(上,下或中间),无自相关的原假设将被拒绝。与此类似,若DW统计量的值位于D的右边,则亦可拒绝无自相关的原假设。若DW统计量的值位于B和C之间,则可接受原假设。而当DW统计量的值位于A和B之间或C和D之间时,则无法得出结论。上述分析可以概括为:DWD 存在自相关BDWC 无自相关ADWB或CDWD 无结论区无结论区的存在是DW法的最大缺陷。德宾和沃森据此导出了一个下界dL和一个上界du来检验自相关,dL和du仅依赖于观测值的数目n、解释变量k,以及显著性水平,而不依赖于解释变量所取的值。(请参阅DW表),实际的检验程序可用下面的示意图
41、说明。正自相关 无结论区 无自相关 无结论区 负自相关0 dL du 2 4du 4dL 4,检验程序如下: a. 用OLS法对原模型进行回归,得残差et (t=1,2,n)。b. 计算DW值(计算机程序给出DW值)。c. 用N,K和查表得dL,du。d. 判别,若 DW dL, 则存在正相关 若DW2 若dL DW du, 无结论若 du DW, 则无自相关若DW2,则令DW= 4 - DW,按上述准则进行判别。例:DW=3.5,则 DW= 4 - 3.5 = 0.5 查表(n=30, k=2, =5%)得:dL =1.28。DW=0.5 1.28结论:存在自相关。,2其它检验自相关的方法D
42、W检验法只能检验一阶自相关,并且,如果方程中包括滞后因变量(如Yt-1,Yt-2等)时,用DW法检验容易产生偏差。因此,在碰到较复杂的情形,我们应采用一些其它检验自相关的方法。下面列出几种方法及其适用环境。检验方法 适用环境 Durbin-Watson d检验法 一阶自相关,方程中无Y的滞后项Durbins h 检验法 一阶自相关,方程中有Yt-1Box-Pierce检验法 一般自相关(一阶、二阶、K阶)LM检验法 一般自相关(一阶、二阶、K阶),四 消除自相关的方法1一阶自相关如果实际问题的自相关模式为一阶自相关,则只要知道,就可以完全消除自相关,下面用双变量模型来说明,但同样的原理适用于多
43、个解释变量的情形。设 Yt = +Xt+ ut (1)ut=ut-1+t 其中t是白噪声,且0。(1)式两端取一期滞后,得Yt-1 = +Xt-1+ ut -1 (2)(2)式两端乘以,得Yt-1 = +Xt-1 + ut -1 (3),(1)-(3),得:Yt -Yt-1 = (1-)+(Xt-Xt-1) + (ut -ut -1) (4)(4)式中的扰动项为 ut -ut1 =t,从而满足标准假设条件。 令 Yt= Yt -Yt-1 Xt= Xt-Xt-1 =(1-),有Yt = +Xt+ t (5)若为已知,我们就可用OLS法直接统计(5)式,否则需要先估计。在未知的情况下,通常用下列两
44、种方法。,(1)科克伦奥克特法(CochraneOrcutt)科克伦奥克特法是一个迭代过程,步骤如下: 估计原模型(1)式),计算OLS残差et(t=1,2,n)。 et对et-1回归,即估计et=et-1+t,得到的估计值 用 产生然后估计 Yt = +Xt+ t ,得到和的估计值 和 。 重新计算残差,返回第步。 此过程不断修改 , 和 ,直至收敛。,(2)希尔德雷斯卢法(Hildrethlu)此方法实际上是一种格点搜索法(Grid search),即在的预先指定范围(如-1至1)内指定格点之间距离(如0.01),然后用这样产生的全部值(-1.00,-0.99,1.00)产生 Yt= Yt
45、 -Yt1 Xt= Xt-Xt1 估计 Yt = +Xt+ t产生最小标准误差的值即作为的估计值,用该值得到的 和 即为原模型的系数估计值。,2一般自相关对于一般自相关问题,我们可采用广义最小二乘法处理。自相关意味着扰动项u的方差协方差矩阵E(u12) E(u1u2) E(u1un)E(uu) = E(u2u1) E(u22) E(u2un) E(unu1) E(unu2) E(un2)中某些E(uiuj)0,ij.即E(uu)=2,其中为对称正定矩阵。因而可应用GLS法。此方法可用于任何类型的自相关,步骤如下:,(1)规定自相关的形式例: (2)用代数方法确定E(uu) 矩阵的元素E(ut2
46、), E(utut-1), E(utut-2) , , 即用 1, 2, , 2等未知值表示上述元素,于是得到了矩阵。(3)用OLS法得到原方程的最小二乘残差e1, e2,en , 然后根据这些残差估计1, 2, , 得到其估计值 代入上一步得到的矩阵,从而给出全部元素为已知的矩阵。(4)计算,第五章 小结一、误设定误设定包括函数形式的误设定和解释变量的误设定。我们重点介绍了两种类型的误设定。1、模型中忽略了有关的解释变量其后果是使参数估计量产生偏倚,即OLS估计量不再是无偏估计量。2、模型中包括了无关的解释变量其后果是增大了估计量的方差,但估计量仍无偏。在实际工作中,我们可用拉姆齐RESET
47、检验法检验模型是否误设定,但仍无法准确判断是何种类型的误设定。一般原则是尽量不漏掉与因变量有关的解释变量尤其是理论上重要的变量,判断一个变量是否应加进回归方程中,可依据本章介绍的四项准则。,二、多重共线性当解释变量之间存在着高度相关时,就会发生多重共线性。多重共线性虽然不影响参数估计量的无偏性,但会造成参数估计量的高方差、精度差和低t值,犯第类错误的可能性增加.。多重共线性可通过回归结果进行判断,可以通过解释变量的相关系数矩阵检验,还可用条件指数检验。解决多重共线性问题主要从以下两个方向进行: 1、减少要估计的参数,即利用给定的数据估计较少的参数。2、改变数据,即增加信息。这是一个要在实践中反复摸索的问题。,三、异方差性若 Var(ut)= 2 = 常数 的假设不成立,则称扰动项具有异方差性。异方差性主要发生在横截面数据或时间跨度很大的时间序列数据的情形。1、 异方差性的后果(1)虽然OLS估计量仍是无偏的,但不再具有最小方差的性质,即不再是有效的。(2)系数的置信区间和显著性检验结果不可信赖。2、 异方差性的检验常用的检验方法有斯皮尔曼等级相关检验法、戈德弗尔德-夸特检验法和格里瑟检验法。建议采用前两种方法检验异方差性的存在,用格里瑟检验法确定异方差性的形式。,