1、目 录引言 11 拉普拉斯变换以及性质 11.1 拉普拉斯变换的定义 11.2 拉普拉斯变换的性质 22 用拉普拉斯变换求解微分方程的一般步骤 23 拉普拉斯变换在求解线性微分方程中的应用 33.1 初值问题与边值问题 33.2 常系数与变系数微分方程 43.3 含 函数的微分方程 43.4 常微分方程组 53.5 求解二阶常系数非齐次线性微分方程的特解 64 拉普拉斯变换在求解偏微分方程中的应用 84.1 齐次与非齐次偏微分方程 84.2 有界问题与无界问题 94.3 多维偏微分方程的求解 .11结束语 .13参考文献 .13英文摘要 .14致谢 .14忻州师范学院物理系本科毕业论文(设计)
2、1拉普拉斯变换在求解微分方程中的应用物理系 0801 班 学 生 岳艳林指导老师 韩新华摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用。本文以讨论拉普拉斯变换在求解微分方程中的应用为目的,首先,介绍拉普拉斯变换的定义及性质;其次,给出拉普拉斯变换求解微分方程的一般步骤;随后,举例拉普拉斯变换在求解微分方程与典型偏微分方程中的应用;最后,总结拉普拉斯变换在求解微分方程中的优势以及局限性。关键词:线性微分方程;特解;偏微分方程;多维拉普拉斯变换引言拉普拉斯变换在许多科学技术和工程领域有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着非常重要
3、的作用。人们在研究这些系统时,往往是从实际问题出发,将研究的对象归结为一个数学模型,在许多场合下,这个数学模型是线性的。换句话说,它可以用线性的微分方程、微分积分方程乃至于偏微分方程等来描述。用拉普拉斯变换法去分析和求解这类线性方程是十分有效的,甚至是不可缺少的。1 拉普拉斯变换以及性质1.1 拉普拉斯变换的定义设函数 当 时有定义,而且积分()ft0)()是 复 参 量sdtef在 的某一区域内收敛,则此积分所确定的函数可写为s tfsFs)()(0我们称此式为函数 的 Laplace 变换式。若 是 的 Laplace 变换,ft ()Fft则称 为 的 Laplace 逆变换。()ftF
4、s拉普拉斯变换是存在一定条件的,Laplace 变换存在定理如下:若函数 满足下列条件:()ft(1)在 的任一有限区间上分段连续;0忻州师范学院物理系本科毕业论文(设计)2(2)当 时, 的增长速度不超过某一指数函数,亦即存在常数t()ft及 ,使得 ( )成立。0McctMe0则 的 Laplace 变换()ft dtefsFs)()(0在半平面 上一定存在,右端的积分在 上绝对收敛且一致R()sc1Rc收敛,并且在 的半平面内, 为解析函数 1。e()s1.2 拉普拉斯变换的性质 1,2(1)线性性质 若 , 是常数, , ,则11()LftFs22()LftFs122()+Lftft(
5、2)微分性质 若 ,则Fs12(2)(1)()(0)()0nnnnnftfsfsff(3)积分性质 若 ,则Ls01tLdLF(4)位移性质 若 ,则()ftF()(Re)atefsac(5)延迟性质 若 ,且 时 ,则st=t对于任一非负实数 ,()()sLfeF(6)相似性性质 若 ,则()LftFs1at(7)卷积性质 若 , ,则1122()fs2()ftts2 用拉普拉斯变换求解微分方程的一般步骤像其他方法求解微分方程一样,应用拉普拉斯变换求解微分方程也有规范的步骤,其一般步骤如下:(1)对线性微分方程中每一项取拉普拉斯变换,使微分方程变为象函数的代数方程;(2)解象函数的代数方程,
6、得到有关变量的拉普拉斯变换表达式,即象函数;忻州师范学院物理系本科毕业论文(设计)3(3)对象函数取拉普拉斯逆变换,得到微分方程的解。流程图如下 3:象函数的代数方程象函数原函数微分方程解代数方程取拉普拉斯变换取拉普拉斯逆变换图 2.1 拉普拉斯变换求解微分方程的流程图3 拉普拉斯变换在求解线性微分方程中的应用对于线性微分方程,无论是初值问题还是边值问题,无论是常系数微分方程还是变系数微分方程以及含有 函数的微分方程和微分方程组,应用拉普拉斯变换求解比起其他解法具有不可替代的优越性。3.1 初值问题与边值问题例:求解初值问题 , 。43tye(0)1y解:设 ,对方程两边同时取拉普拉斯变换,有
7、()(YsLt20)()3()sYYs结合初始条件,得出象函数,整理展开成部分分式,有2 26711()1(3)4()43sYsss对方程两边同时求反演,整理可得方程的解为1 33()() (7)2ttt ttytLseee例:求解边值问题 , , 。0y()0y21y解:设 ,对方程两边同时取拉普拉斯变换,有()(Yst20)(Ys代入初始条件,得 2(1)()yss忻州师范学院物理系本科毕业论文(设计)4求反演,得 1()()(0)(0)sinh2ttytLYsyeyt将条件 代入上式可得(0)sinh所以,方程的解为 sinh()2tyt3.2 常系数与变系数微分方程例:求解常系数微分方
8、程 , , 。0y()0(1)2y解:设 ,对方程两边同时取拉普拉斯变换,有()(YsLyt20)2()()sYs结合初始条件,得出象函数 22()()()1yYss对方程两边同时求反演 1()()0tytLsye将条件 代入上式,可得22(0)ye所以,方程的解为 11()tttLYs例:求解变系数微分方程, , 。20tyty()0(),(yc为 常 数 )解:设 ,对方程两边同时取拉普拉斯变换()(YsLtt2()()02()0()0ddsysYyYs结合初始条件整理,并且两边积分可得 arctn利用 ,可得)(limsYs c所以, ss1artnrt2对方程两边同时求反演,可得方程的
9、解为 1()()siytLYt忻州师范学院物理系本科毕业论文(设计)53.3 含 函数的微分方程例:质量为 的物体挂在弹簧系数为 的弹簧一端,当物体在 时在 方向mk0tx受到冲击力 ,其中 为常数。若物体自静止平衡位置 处开始()ftAt运动,求该物体的运动规律 1。()xt解:根据牛顿定律,有 fk其中 由胡克定律所得,是使物体回到平衡位置的弹簧的恢复力。所以,kx物体运动的微分方程为 ,且 ,这是二阶常系()0mxft()0x数非齐次微分方程,对方程两边取拉普拉斯变换,设 ,并考虑到()LtXs初始条件,则得 2()sXksA如果记 ,有0201对方程两边同时取反演,从而方程的解为 0(
10、)sinAxttm可见,在冲击力作用下,运动为一正弦振动,振幅是 ,角频率是 ,00称 为该系统的自然频率(或称固有频率) 。03.4 常微分方程组例:求解三维常微分方程组 0)()0()0(., zyxzyzyx解:设 , , ,对方程组的三个方程两()(XsLt)(YsLt)(ZsLt边分别取拉普拉斯变换并结合初始条件,有 2210,()()1.ZssXY解该方程组,得 .1321)2(1)( ,322 223 ssssZYss忻州师范学院物理系本科毕业论文(设计)6取其逆变换,可得原方程组的解.cos31)2cosh(31)(,2tttzytx3.5 求解二阶常系数非齐次线性微分方程的特
11、解非齐次微分方程求特解的方法通常有比较系数法、常数变易法、算子法等,用拉普拉斯变换法求解微分方程的特解也比较方便。形如 的二阶常系数非齐次线性微分方程,其中 主要()yabfx ()fx有三种形式 4:()xfe21()()npxpxp其 中()sincosff、利用拉普拉斯变换求 三种形式下的特解方法举例:()设 , ,令初始条件为零,对方程两边同时取拉()(YLytFLfx普拉斯变换,得到 。2()sab例 1:求微分方程 的特解。xye解:设 ,初始条件为零,对方程两边同时取拉普拉斯变换,有 ()(YsLt21+)令 ,则该齐次微分方程特解的形式与变换项 有关,2()ABss 2As对应
12、的齐次微分方程的通解由 决定,此时该项分母中不含有特解因子 ,21s特解只取决于 5,于是2s2()15sAYx相应的拉普拉斯变换特解为 ()25()ss对方程两边同时求反演,整理可得原微分方程的特解为忻州师范学院物理系本科毕业论文(设计)7112()()5()xyxLYses例 2:求微分方程 的特解。26xy解:设 ,设初始条件为零,对方程两边同时取拉普拉斯变换,有 ()(st215)Ys令 ,则2()6ABs2(Y4251ss 42)1(ss1则相应的拉普拉斯变换特解为 2223()()()()Asss对方程两边同时求反演,整理可得原微分方程的特解为 )21()2(1)()()( 311
13、 xesLsYxy x例 3:求微分方程 的特解。45inyx解:设 ,设初始条件为零,方程两边同时取拉普拉斯变换,有 ()(st)2sY令 ,则22()45ABs)Y422ss 42)1(s65)1(s相应的拉普拉斯变换特解为 222(41)() (8)654Asss 对方程两边同时求反演,整理可得原微分方程的特解为 )2sinco8(651)()( 2211 xsLYxy 从以上的例题可以看出,用拉普拉斯变换求解微分方程、微分方程组以及二阶常系数非齐次方程的特解时具有以下特点:(1)用拉普拉斯变换方法求解微分方程,由于同时考虑初始条件,求出的忻州师范学院物理系本科毕业论文(设计)8结果便是
14、需要的特解。而微分方程的一般解法中,先求通解,再考虑初始条件确定任意常数,从而求出特解的过程比较复杂;(2)零初始条件、零边界条件使得拉普拉斯变换方法求解微分方程更加简单。而在微分方程的一般解法中,不会因此而有任何简化;(3)对于一个非齐次的线性微分方程来说,当非齐次项是 函数时,用拉普拉斯变换求解没有任何困难。而用微分方程的一般解法就会困难很多;(4)用拉普拉斯变换方法求解微分方程组,不仅比微分方程组的一般解法要简便得多,而且可以在不知道其余未知函数的情况下单独求出某一个未知函数。但在微分方程的一般解法中通常是不可能的;(5)用拉普拉斯变换方法求解线性微分方程的特解非常有效,且有助于问题的简
15、化。而高等数学中先由自由项的形式设出特解的相应形式,再回到原方程的左边用待定系数法的方法求解,求法较繁;(6)拉普拉斯变换对象函数要求比傅里叶变换弱,其使用面更宽。但拉普拉斯变换像其他变换一样都有其局限性,只有满足其存在定理时才可以使用拉普拉斯变换 6。而在微分方程的一般解法中,并没有任何限制。4 拉普拉斯变换在求解偏微分方程中的应用一些偏微分方程来自物理问题,又称为数学物理方程,求解数学物理方程定解问题的方法有分离变量法、行波法、格林函数法、积分变换法等。拉普拉斯变换法是积分变换法的一种,其适用范围更广。用之求解的定解问题可以是有界的也可以是无界的,方程和边界条件可以是齐次的也可以是非齐次的
16、。当然,它一般适用于波动方程和输运方程,因为稳定方程不含有时间变量。4.1 齐次与非齐次偏微分方程例:求解齐次偏微分方程)0,(.),(lim),(0,022 txtutuxuatxxtt解:对该定解问题关于 取拉普拉斯变换,这样,原定解问题转化为含参数 的t s二阶常系数线性齐次微分方程的边值问题:忻州师范学院物理系本科毕业论文(设计)922(,)(,)00lim.xdsUxas解此微分方程,可得其通解为,其中 , 为常数12(,)ssxxace1c2将边界条件 , 代入上式,可得 (0,)(,)(LutUslim(,)0xUs,1()cs2c所以, ,()sxaxe方程两边取反演,从而原定
17、解问题的解为 )()(),(),(11 axtsLsUtuxa 例:求解非齐次偏微分方程)0,(),(.0,22 txgutxatxt 为 常 数解:对该问题关于 取拉普拉斯变换,这样,原定解问题转化为含参数 的二阶t s常系数线性非齐次微分方程的边值问题:.0lim,10222Usgasdxs解此微分方程,可得其通解为,其中 , 为常数123(,)ssxxaagce1c2将边界条件 , 代入上式,可得0xUli0s123,gcs所以, 33(,)(1)sxxsaagxee忻州师范学院物理系本科毕业论文(设计)10方程两边取反演,从而原定解问题的解为 221 )(),(),( axtgsxUL
18、txu4.2 有界问题与无界问题例:求解有界偏微分方程)0,(.0,),022 tlxtutxattlx解:对该定解问题关于 取拉普拉斯变换,这样,原定解问题转化为含参数 的t s二阶常系数线性齐次微分方程的边值问题:).(,0,2sUasdxlx解此微分方程,可得其通解为,其中 , 是常数12(,)ssxxaace1c2将边界条件 , 代入上式,可得0x)(slx,12()ssllae从而 ()()(3)(3)44(,) 11sssslxlxlxlaaaal ls seeUxs方程两边取反演,从而原定解问题的解为 ),()(1sxLtxu)()()axltultaxltul 33(t例:求解
19、无界偏微分方程忻州师范学院物理系本科毕业论文(设计)11),(.0,02为 常 数uhuxattx解:对该问题关于 取拉普拉斯变换,这样,原定界问题转化为含参数 的二阶t s常系数线性齐次微分方程的边值问题: .(0lim,022为 自 然 定 解 条 件 )Usuahsdxx解此微分方程可得通解为,其中 , 为常数12(,)shshxxaaxce1c2将边界条件 , 代入上式,可得 ,suUx0lix 10c02us从而, 0(,)hae方程两边取反演,从而原定解问题的解为 2()042()hxaxatuxted4.3 多维偏微分方程的求解利用多维拉普拉斯变换可以求解多维偏微分方程,多维拉普
20、拉斯变换是一维拉普拉斯变换的拓展。多维拉普拉斯变换的定义为 7:设 元函数 在 上有定义,且积分n),(21nttf 0,.021ntt ntss dtef n 21)(00 21),(在 的某一区域内收敛( , 是 维复数域),则此积分nCnCs,21的 维拉普拉斯变换,记为),21ttf ),(21fLttfLsFnn nndtttf 21210),(称 为 的 维拉普拉斯逆变换。),21ttf ,sF多维拉普拉斯变换的性质及解题步骤跟一维情况相类似。忻州师范学院物理系本科毕业论文(设计)12例:求解三维偏微分方程)0,().,),(),( (,0605040 32122 zyxfzuxf
21、yuzfxu yzyxz解:记 123,UsL, ,1()()Ffz2132(,)(,)FsLfxz3123(,)(,)FsLfxy, ,4234,y5566利用微分性质和边界条件在方程两边取三维拉普拉斯变换可得 22114253360sssU解得 2312456123(,) UFF取三维拉普拉斯逆变换便得所求边值问题的解为 1123456223(,) uxyzLsss特别地,若取 , , 1(,)fyz22(,)fxz23(,)fxy, ,则4(,)fyz56(,)0xzf, ,323214ssF2132314Fss123124(,)Fss,4232(,)513612(,)(,)0所以 12
22、32221313134(,)Usss故 2,(,)uxyzLxyz用拉普拉斯变换求解由偏微分方程构成的定解问题,对区域有界与否、对方程和边界条件齐次与否并无特殊的要求 8。能用这种变换法求解的问题是相当广泛的。用拉普拉斯变换求解定解问题有一定的优势,也有一定的局限性。(1)用拉普拉斯变换求解偏微分方程,可以使解 个自变量偏微分方程的n问题,转化为解 个自变量的微分方程的问题 9,逐次使用拉普拉斯变换,1n忻州师范学院物理系本科毕业论文(设计)13自变量会逐个减少,有时还可将解 个自变量偏微分方程的问题最终转化为解n一个常微分方程的问题,比偏微分方程的一般解法更为简单、直接;(2)用拉普拉斯变换
23、求解偏分方程,如果对微分方程的某一自变量取拉氏变换必须在定解条件中给出该自变量为零的未知函数值以及直到低于方程阶数的各阶导数值,否则变换后的象函数的方程是不确定的;(3)用拉普拉斯变换求解偏微分方程,对于无界空间和半无界空间的定解问题求得的解是积分形式,因此便于理论上分析研究 10,但在求反演的过程中往往会在计算上遇到较大的困难。对于有界空间的定解问题用拉氏变换法求解显得繁杂,而用分离变数法会特别简单;(4)对于一些用现有方法难于求解的多维偏微分方程,用多维拉普拉斯变换均能简便地求解,多维拉普拉斯变换比一维拉普拉斯变换具有更大的广泛性和优越性。结束语拉普拉斯变换是用来求解线性微分方程和偏微分方
24、程的一种非常适用的方法,求解微分方程的步骤比较明确、规律性比较强、思路清晰且容易掌握。灵活使用拉普拉斯变换,可以巧妙地推出一些复杂问题的答案。参考文献1 张元林.工程数学积分变换( 第四版)M. 北京:高等教育出版社,2003:68-138.2 梁昆淼.数学物理方法(第三版 )M.北京:高等教育出版社,1998:120-121.3 全生寅.论解 N 阶常微分方程的 Laplace 变换法J. 青海大学学报,2000,18(5):61-62.4 李曼生,陈莉.拉普拉斯变换在求解微分方程中的应用J.广西右江民族师专学报,2006,19(3):5-8. 5 张刁民.拉普拉斯变换求二阶常系数非齐次微分
25、方程的特解J. 河南教育学院学报,2005,14(1):27-28.6 胡嗣柱,倪光炯.数学物理方法( 第二版)M. 北京:高等教育出版社,2002:237.7 范洪福.多维 Laplace 变换及其应用J.华东工业大学学报 ,1995,17(3):86-94.8 姜立新.Laplace 变换的应用研究J.枣庄学院学报,2010,27(2):37-40. 9 谢小良.基于 Laplace 变换下微分方程的解法及应用J.湖南城市学院学报( 自然科学版),2003,24(3):85-86.忻州师范学院物理系本科毕业论文(设计)1410郭本宏.数学物理方法M. 山西高校联合出版社,1994:721-
26、733.Application of Laplace Transformto Solve Differential EquationsDepartment of Physics 0801 Student Yanlin YueTutor Xinhua HanAbstract: Laplace transform has a very important role in solving differential equations. This thesis takes the discussion on the application of Laplace transform to general
27、 solutions of differential equations as a goal.First of all, introduce the definition and properties of the Laplace transform; secondly, show the General steps of the Laplace transform to solve differential equations; thirdly, give examples of Laplace transform in settling differential equation and
28、typical partial differential equations; finally, summary the superiorities and limitations of Laplace transform to solve differential equations.Keywords: linear differential equation; particular integral; partial differential equation; multidimensional Laplace transform致谢 本论文从选题到定稿,每一步都是在韩老师的悉心指导下完成的,她渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响颇深。不仅使我树立了远大的学术目标、掌握了基本的研究方法,还使我明白了许多待人接物与为人处事的道理。在此,谨向韩老师表示崇高的敬意和由衷的感谢!在写论文的过程中,还有许多可敬的老师、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!