收藏 分享(赏)

高中数学(北师大版)选修1-1教案:第2章 双曲线 第一课时参考教案.doc.doc

上传人:微传9988 文档编号:2551491 上传时间:2018-09-21 格式:DOC 页数:4 大小:214KB
下载 相关 举报
高中数学(北师大版)选修1-1教案:第2章 双曲线 第一课时参考教案.doc.doc_第1页
第1页 / 共4页
高中数学(北师大版)选修1-1教案:第2章 双曲线 第一课时参考教案.doc.doc_第2页
第2页 / 共4页
高中数学(北师大版)选修1-1教案:第2章 双曲线 第一课时参考教案.doc.doc_第3页
第3页 / 共4页
高中数学(北师大版)选修1-1教案:第2章 双曲线 第一课时参考教案.doc.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.3.1 双曲线的标准方程【教学目标】:1.知识与技能掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程.2.过程与方法教材通过具体实例类比椭圆的定义,引出双曲线的定义 ,通过类比推导出双曲线的标准方程.3.情感、态度与价值观通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.【教学重点】: 双曲线的定义、标准方程及其简单应用【教学难点】: 双曲线标准方程的推导【授课类型】:新授课【课时安排】:1 课时 奎 屯王 新 敞新 疆【教 具】:多媒体、实物投影仪【教学过程】:一.情境设置(1)复习提问:(由一位学生口答,教师利用

2、多媒体投影)问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?问题 3:如果把上述椭圆定义中的“距离的和” 改为 “距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢?(2)探究新知:(1)演示:引导学生用几何画板 作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。(2)设问:|MF 1|与|MF 2|哪个大?点 M 到 F1 与 F2 两点的距离的差怎样表示?|MF 1|-|MF2|与|F 1F2|有何关系?(请学生回答:应小于|F 1F2| 且大于零,当常数等于|F 1F2| 时,轨迹是以F1、F 2 为端点的两条射线;当常数大于|F 1F2| 时,无轨

3、迹)二.理论建构1.双曲线的定义引导学生概括出双曲线的定义:定义:平面内与两个定点 F1、F 2 的距离的差的绝对值等于常数(小于0) ,则F1(c ,0 ) 、F 2(c,0) ,又设点 M 与 F1、F 2 的距离的差的绝对值等于常数2a( 2a2c).(3)列式由定义可知,双曲线上点的集合是 P=M|MF1|MF 2|=2a.即:(4)化简方程由一位学生板演,教师巡视。化简,整理得:,222aycxycxaycxycx222yO xMF1 F2移项两边平方得两边再平方后整理得由双曲线定义知这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在 x 轴上,焦点是 F1(-c,0) 、F 2

4、(c , 0) ,思考: 双曲线的焦点 F1(0,c ) 、F 2(0,c )在 y 轴上的标准方程是什么?学生得到: 双曲线的标准方程: .)0(,12baxay注:(1)双曲线的标准方程的特点: 双曲线的标准方程有焦点在 x 轴上和焦点 y 轴上两种:焦点在 轴上时双曲线的标准方程为: ( , );x 12ba0b焦点在 轴上时双曲线的标准方程为: ( , )y 2xya 有关系式 成立,且 奎 屯王 新 敞新 疆cba, 22bac0,cba其中 a 与 b 的大小关系:可以为 奎 屯王 新 敞新 疆,(2).焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、 项的分母

5、的大小来确定,分母大的项对应的字母所在的轴就是焦点所在2xy的轴 奎 屯王 新 敞新 疆 而双曲线是根据项的正负来判断焦点所在的位置,即 项的系数是正的,2x那么焦点在 轴上; 项的系数是正的,那么焦点在 轴上 奎 屯王 新 敞新 疆x2yy三.数学应用22ycxacx2222a)0,(1)(,0,2 22babyaxccac上 上上例 1、已知双曲线两个焦点的坐标为 ,双曲线上一点 P 到)0,5(),(21F,的距离之差的绝对值等于 8,求双曲线标准方程 奎 屯王 新 敞新 疆 2F上解:因为双曲线的焦点在 轴上,所以设它的标准方程为x( , ) 奎 屯王 新 敞新 疆12byax0b 奎 屯王 新 敞新 疆0,82c5,4c164522b所求双曲线标准方程为 奎 屯王 新 敞新 疆1692yx变式 1:若|PF 1|-|PF2|=6 呢?变式 2:若|PF 1|-|PF2|=8 呢?变式 3:若|PF 1|-|PF2|=10 呢?四.课堂小结:双曲线的两类标准方程是 焦点在 轴上,)0,(12bayxx焦点在 轴上, 有关系式 成立,且)0,(12baxy c, 22ac 奎 屯王 新 敞新 疆其中 a 与 b 的大小关系:可以为 奎 屯王 新 敞新 疆,0c b,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报