1、电力变压器铁心柱截面的优化设计摘要:针对变压器铁心柱截面优化设计,建立数学模型并用 matlab 函数 constr 编程与搜索法求解,有计算速度快,稳定性好等特点,铁心利用率比较原设计图纸算法可提高 3.8%左右,具有一定的实用价值。对于直径为 800mm 的铁心柱,原设计级数为 17 级,通过对模型求解,发现级数为 12 级时,仍能达到96%的铁心截面积利用率,则可减少 10 级叠片的叠压,因此可在生产设计时考虑采用 12 级的叠片设计方案。关键词:铁心利用率;非线整数性规划;搜索领域;尾数调整1 问题的提出电力变压器设计中一个很重要的环节就是铁心柱的截面如何设计。变压器铁心截面在圆形的线
2、圈里。为充分利用线圈内空间,心式铁心柱截面常采用多级阶梯型结构,如图1:各小阶梯(又称为“级” )均为矩形。截面在圆内是上下轴对称的,阶梯的每级都是由许多种宽度的硅钢片迭起来的,如何构造各个小矩形,使几何截面积最大?这就是电力变压器铁心柱截面积的优化问题。为了改善铁心柱内部的散热,在某些相邻阶梯形之间留下一些水平空隙,放入冷却油。油道的位置应使其分割的各部分铁心柱截面积近似相等。因此在确定各级的设计后,还要考虑油道的设计。2 符号约定铁心柱截面积S第 级宽度的一半 ixni,.21第 级的厚度iyi各级面积iS,.尾数,为 5 或 10外接圆直径d外接圆半径r油道分开各部分的面积iSmi,.2
3、13 问题的分析与模型的建立我国变压器制造业通常采用全国统一的标准铁心设计图纸,根据多年的生产经验,各生产厂存在着对已有设计方案的疑问:能否改进及如何改进这些设计,才能在提高使用效益的同时降低变压器成本。所以以往在设计大直径多级铁心柱时,工厂一般采用作图法,即在图纸上经过反复核算,画出较好的铁心截面积设计方案,实际上与最优解的偏差较大;近年来由于计算机的应用及数学软件的发展,产生了建立数学模型并利用计算机使用多种方法求解的思想。本文的重点主要在计算机求解与数据分析。对于变压器铁心柱的级宽,都可以通过已知的直径算出相应的厚度,因此可以转化为以各级的宽度为变量的数学模型。由于现有的各直径铁心柱的级
4、数都是参照生产经验,认为要达到一定的级数才能满足一定的几何截面积,而没有科学的精确的求解过程。因此设想通过对模型的计算所得出的数据,只要在满足一定的几何截面积的前提下,如果能减少级数,便可减少生产成本。3.1 模型 1No.355 由于制造工艺的要求,硅钢片的宽度一般取为 5 或 10 的倍数(单位:毫米) 。因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以一般要求第一级的厚度最小为 26 毫米,硅钢片的宽度最小为 20 毫米。令 为铁心利用率。对直径 d,以(2rS)为其各级的宽度, ( )为相应的厚度。面积函数为nx,21 ny,1,x 与 y 的关系为 ,可得以下模型i
5、iS12)(itixr2,maii2各级宽度必须为 的倍数.tsiix第一级厚度必须大于 26mm261y第 n 级宽度大于 20mm0nx各级宽度逐级递增x21此模型为非线整数规划。3.2 模型 2油道处于相邻两级间, 取油道间的面积。iS令 1.21nS212n nnmSSm.11油道为 时,将铁心柱截面分为 部分,即 , , , ,要求各部分1S2mS1面积必须近似相等,则各级面积应与 近似相等,即:1mSi ,.2i4 模型的求解41模型 1 的求解当铁心柱直径一定时,级数愈多,截面积愈大,但级数多,则硅钢片的规格就多,制造工时也就多,因此需要综合考虑铁心利用系数于制造工艺问题,在工程
6、实践种铁心柱直径与级数的经验对应关系如下表 1:铁心柱直径(mm) 80195 200265 270390 400740 760800 1000 120056 级数 57 810 11 1214 1517 19 22表 1 铁心柱截面级数的选择本文以 d=800mm 为例,给出两种铁心柱截面积优化的方法搜索法与运用 matlab求解非线性规划的方法。再以此例,对比 d=800mm 时 n=11,12,17 的数据,对铁心柱的级数进行优化。4.1.1 matlab 求解非线性规划在 matlab 中运用 constr 函数 3,可求解出非线性规划目标函数中各未知数的最优解, (程序见附录 1)但
7、结果为小数,需要编程进行调整。由于对宽度的尾数限制,要对附录 1 中运行出来的数据进行处理。要求以 5 为倍数时,当尾数为(0,2.4)与(7.5,0)范围内,令其为 0,在(2.5,7.4)范围内时,令其为 5;要求以 10 为倍数时,则四舍五入。得出 d=800mm,即面积为时,各级的宽度、厚度及面积与铁心利用率如下:第 级i1 2 3 4 5 6 7 8 9宽度 ix790 775 750 725 700 670 635 600 5655为尾数 厚度 iy126 72 80 60 49 50 49 43 37宽度 ix790 770 750 730 700 670 640 600 560
8、10为尾数 厚度 iy126 91 61 49 60 50 43 49 42第 级 10 11 12 13 14 15 16 17宽度 ix520 480 430 380 325 265 195 1155为尾数 厚度 iy42 32 35 29 27 24 21 16面积为,利用率为97.24宽度 ix520 480 430 380 330 270 200 11010为尾数 厚度 iy37 32 35 29 25 24 22 18面积为,利用率为97.254.1.2 搜索法由于各级铁心柱最小级要求在 20mm 以上,第一级宽小于 795,考虑铁心柱是一对称图形,因此在求解中只计算 1/4 圆的
9、面积即可。由于 d=800mm 的经验级数是 15-17 级,因此对于宽度以 5 的倍数时搜索法如果直接以 5mm 为步长进行搜索运行的时间将相当长,所以先以 20mm 为步长搜索出宽度大概所处的范围,再在其领域进行搜索,求出截面积最大的最优解。第一级的搜索范围为(10,397.5) ,由于各级的宽度是逐级递减的,所以第二级为(12.5,395) ,第 n 级为(10+2.5n,397.5-2.5n) 。这样得出来的数据无须人工调整为5 的整数倍,且精确度非常高,但是对于级数较多的铁心柱来说,运行所需时间相当长。(程序见附录 2,只给出领域搜索部分的程序) 。数据与 matlab 求解非线性规
10、划相吻合。对比两种方法,matlab 求解非线性规划运行速度快,但是数据必须经过调整;搜索法时间非常长,但无须进行数据调整,对比两种方法的结果没有差别。因此建议采用 matlabNo.357 求解非线性规划的方法。由于原 17 级铁心柱利用率较低,为 93.48,因此考虑在减少级数的同时,如果能达到一定的铁心利用率,便可降低制造成本。通过计算后发现,n=12 级时,其利用率仍大于 96%,因此,如选用 12 级,整个铁心柱的制造成本将大大降低。下表给出级数为 11-16 时各级的宽度与厚度及其利用率。级数为 16 时 (单位:mm)第 级i1 2 3 4 5 6 7 8 9宽度 ix790 7
11、70 750 720 690 660 625 585 5455为尾数 厚度 iy126 91 61 70 56 47 47 46 40宽度 ix790 770 750 720 690 660 620 580 54010为尾数 厚度 iy126 91 61 70 56 47 53 45 39第 级 10 11 12 13 14 15 16宽度 ix500 450 395 340 275 205 1255为尾数 厚度 iy39 37 34 28 27 22 18面积为,铁心利用率为96.83宽度 ix500 450 400 340 280 200 12010为尾数 厚度 iy34 37 31 31
12、 25 25 16面积为,铁心利用率为96.68级数为 15 级 (单位:mm)第 级i1 2 3 4 5 6 7 8宽度 ix790 770 745 715 685 645 610 5655为尾数 宽度 iy126 91 74 67 54 60 44 49宽度 ix790 770 750 720 680 650 610 57010为尾数 厚度 iy126 91 61 70 73 45 51 44第 级 10 11 12 13 14 15 165为尾宽度 ix520 470 415 355 290 215 125 面积为, 铁心利用率为58 数 厚度 iy42 39 37 33 29 25 2
13、0 96.76宽度 ix520 470 410 350 290 210 12010为尾数 厚度 iy47 39 40 32 26 26 19面积为,铁心利用率为96.78级数为 14 级时 (单位:mm)第 级i1 2 3 4 5 6 7 8宽度 ix790 770 740 710 675 635 590 5405为尾数 厚度 iy126 91 87 65 61 57 54 50宽度 ix790 770 740 710 670 630 590 54010为尾数 厚度 iy126 91 87 65 69 56 47 50第 级 9 10 11 12 13 14宽度 ix490 435 370 3
14、00 225 1305为尾数 厚度 iy42 39 38 32 26 22面积为,铁心利用率为 96.74宽度 ix490 430 370 300 220 13010为尾数 厚度 iy42 42 35 32 28 20面积为,铁心利用率为 96.75级数为 13 级时 (单位:mm)第 级i1 2 3 4 5 6 7宽度 ix790 765 735 700 660 615 5655为尾数 厚度 iy126 108 82 71 65 60 55宽度 ix790 760 730 700 660 610 57010为尾数 厚度 iy126 124 77 60 65 65 44第 级 8 9 10 1
15、1 12 13No.359 宽度 ix510 455 390 315 235 1355为尾数 厚度 iy50 42 40 37 29 24面积为,铁心利用率为96.47宽度 ix510 450 390 320 230 14010为尾数 厚度 iy55 45 37 35 33 21面积为,铁心利用率为96.30级数为 12 级时 (单位:mm)第 级i1 2 3 4 5 6 7宽度 ix785 760 725 690 645 595 5355 为尾数 厚度 iy154 96 88 67 68 62 60宽度 ix790 760 730 690 640 590 54010为尾数 厚度 iy126
16、124 77 78 75 60 50第 级 8 9 10 11 12宽度 ix475 410 335 245 1455 为尾数厚度 iy49 43 40 35 25 面积为,铁心利用率为 96.14宽度 ix480 410 330 250 14010为尾数 厚度 iy50 47 42 31 28面积为,铁心利用率为 96.09级数为 11 级 (单位:mm)第 级i1 2 3 4 5 6 7 8 9 10 11宽度 ix785 755 720 675 625 565 500 430 355 260 1505为尾数厚度 iy154 110 84 81 70 67 58 50 42 40 29面积
17、为,铁心利用率为95.6610为尾数宽度 ix790 760 720 670 620 570 500 430 350 260 150 面积为,铁心利用率为95.6660 厚度 iy126 124 99 88 68 56 63 50 45 37 29下表为各直径下的宽度与厚度等数据表直径: 200mm 级数: 8 级 外接圆面积: 31416 面积: 27890 利用率: 88.78%1 2 3 4 5 6 7 8ix190 180 170 160 150 140 120 110y62 25 18 15 12 11 17 7直径: 400mm 级数: 12 级 外接圆面积: 面积: 11910
18、利用率: 95.42%1 2 3 4 5 6 7 8 9 10 11 12ix390 380 360 340 320 290 260 230 200 160 120 70y89 36 49 36 29 35 28 23 19 20 15 12直径: 600mm 级数: 14 级 外接圆面积: 面积: 利用率: 96.37%i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14( )ixm590 570 550 520 490 460 420 380 340 290 240 180 100 20( )iy109 78 52 60 47 39 43 36 30 31 25 22 1
19、9 8直径:1000mm 级数: 18 级 外接圆面积: 面积: 利用率: 97.5%1 2 3 4 5 6 7 8 9( )ixm990 970 950 920 890 850 810 770 730( )iy141 102 69 80 64 71 60 52 4510 11 12 13 14 15 16 17 18( )ix680 630 58 520 460 390 320 240 140( )iym50 43 38 40 34 53 27 23 19直径:1200mm 级数: 22 级 外接圆面积: 面积: 利用率: 97.82%1 2 3 4 5 6 7 8 9 10 11( )ix
20、1190 1170 1150 1125 1095 1065 1030 990 955 910 870( )iym155 112 76 75 73 62 63 62 48 56 4412 13 14 15 16 17 18 19 20 21 22( )ix825 775 725 670 610 550 485 415 335 250( )iy45 45 40 39 38 33 31 28 26 21 18下表以 d=800 1000 1200 为例,计算出的各项指标与原铁心柱制造指标比较,外接圆面积级数 原截面积 现截面积 原利用率 现利用率No.361 800mm 17 93.48% 97.2
21、51000mm 19 93.75% 97.5%1200mm 22 94.2% 97.63%由以上各表数据可看出,的铁心柱直径越大,优化结果越好。4.2 油道位置的确定为油道平均分割各铁心柱截面各部分的的面积,且 之间近似相等,S mS,21即允许与绝对分割面积间存在误差。先令此误差取较大的一个数 ,累加各级截面积,当累加的和在此误差内时,便在所加的级数间设置一油道,如果设置完所有油道还有剩余面积,或不能设置完油道,则在程序运行过程中逐渐减少 。由于油道厚度为 6mm,直接增加油道会对铁心柱的圆形形状产生较大的影响,所以在确定油道位置后,选择 较小的一ix级,减小 ,令 ,加入油道,则不影响铁心
22、柱形状,且由于对分割的面积影响iy6iiy不大。(程序见附录 3)以 d=800mm,级数为 12 级, 为例,确定最佳的油道设置方案及10分割后各级的面积如下表:半圆中油道位置 1,2 级之间 3,4 级间 5,6 级间分割面积 99540 976805 模型的评价本文对电力变压器铁心柱截面积优化设计给出的算法达到了对其优化的目的,在d=800mm 的算例中级数按原设计要求为 17 级时提高截面积利用率 3.8%。从节约能源的角度出发,对大型变压器来说,将利用率提高 1%也将产生可观的经济效益。当级数设计改为 12级时,相对原利用率也提高了 2.5%,对整个变压器来说,减少 10 级的叠片叠
23、压将大大的提高生产效率及减少成本。Matlab 的编程计算具有计算时间快,优化效果好的特点,对大直径的铁心柱优化效果明显。给出的算法以生产工艺要求为前提,具有使用性。参考文献:1.姚恩瑜、何勇、陈仕平.数学规划与组合优化M.杭州.浙江大学出版社.20012.汪国强.数学建模优秀案例选.广州.华南理工大学出版社.19983.王沫然.MATLAB6.0 与科学计算.北京.电子工业出版社.20014.张树侠等.数据建模及预报.哈尔滨.哈尔滨工程大学出版社.1999附录7.1 附录 1funf=f=-1*(x(1)*sqrt(4002-x(1)2)+x(2)*(sqrt(4002-x(2)2)-sqr
24、t(4002-x(1)2)+x(3)*(sqrt(4002-x(3)2)-sqrt(4002-x(2)2)+x(4)*(sqrt(4002-x(4)2)-sqrt(4002-x(3)2)+x(5)*(sqrt(4002-x(5)2)-sqrt(4002-x(4)2)+x(6)*(sqrt(4002-x(6)2)-sqrt(4002-x(5)2)+x(7)*(sqrt(4002-x(7)2)-sqrt(4002-x(6)2)+x(8)*(sqrt(4002-x(8)2)-sqrt(4002-x(7)2)+x(9)*(sqrt(4002-x(9)2)-sqrt(4002-x(8)2)+x(10)*
25、(sqrt(4002-x(10)2)-sqrt(4002-x(9)2)+x(11)*(sqrt(4002-x(11)2)-sqrt(4002-x(10)2)+x(12)*(sqrt(4002-x(12)2)-sqrt(4002-x(11)2)+x(13)*(sqrt(4002-x(13)2)-sqrt(4002-x(12)2)+x(14)*(sqrt(4002-x(14)2)-sqrt(4002-x(13)2)+x(15)*(sqrt(4002-x(15)2)-sqrt(4002-x(14)2)+x(16)*(sqrt(4002-x(16)2)-sqrt(4002-x(15)2); ;%最大面
26、积的目标函数fung=g=x(2)-x(1)+5;x(3)-x(2)+5;x(4)-x(3)+5;x(5)-x(4)+5;x(6)-x(5)+5;x(7)-x(6)+5;x(8)-x(7)+5;x(9)-x(8)+5;x(10)-x(9)+5;x(11)-x(10)+5;x(12)-x(11)+5;x(13)-x(12)+5;x(14)-x(13)+5;x(15)-x(14)+5;x(16)-x(15)+5;%宽度逐级递减的约束条件62 fun=funf fung;x0=180 185 190 195 200 205 210 215 225 225 230 235 240 245 250 25
27、5; %初始值options=;vlb=85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10; %下界vub=395 390 385 380 375 370 365 360 355 350 345 340 335 330 325 320; %上界x,options=constr(fun,x0,options,vlb,vub);y=zeros(1,16);x=x.*2;x=(round(x./10).*10; %以 10 为倍数的宽度for i=1:16yy=sum(y,1);y(i)=sqrt(8002-x(i)2)-yy;endy=round(y);
28、xy s=x.*y;sum(s,1)(ans)/(4002)*pi)7.2 附录 2max=0;hh1=395;yy1=(4002-hh12)(1/2);ss1=hh1*yy1;for b=1:6hh2=385+(b-3)*5;yy2=(4002-(hh2)2)(1/2)-yy1;ss2=hh2*yy2;for c=1:6hh3=375+(c-3)*5;yy3=(4002-(hh3)2)(1/2)-yy1-yy2;ss3=hh3*yy3;for d=1:6hh4=365+(d-3)*5;yy4=(4002-(hh4)2)(1/2)-yy1-yy2-yy3;ss4=hh4*yy4;for e=1
29、:6hh5=355+(e-3)*5;yy5=(4002-(hh5)2)(1/2)-yy1-yy2-yy3-yy4;ss5=hh5*yy5;for f=1:6hh6=345+(f-3)*5;yy6=(4002-(hh6)2)(1/2)-yy1-yy2-yy3-yy4-yy5;ss6=hh6*yy6;No.363 for g=1:6hh7=335+(g-3)*5;yy7=(4002-(hh7)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6;ss7=hh7*yy7;for h=1:6hh8=325+(h-3)*5;yy8=(4002-(hh8)2)(1/2)-yy1-yy2-yy3-
30、yy4-yy5-yy6-yy7;ss8=hh8*yy8;for i=1:6hh9=315+(i-3)*5;yy9=(4002-(hh9)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8;ss9=hh9*yy9;for j=1:6hh10=305+(j-3)*5;yy10=(4002-(hh10)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9;ss10=hh10*yy10;for k=1:6hh11=285+(k-3)*5;yy11=(4002-(hh11)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7
31、-yy8-yy9-yy10;ss11=hh11*yy11;for l=1:6hh12=265+(l-3)*5;yy12=(4002-(hh12)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-yy11;ss12=hh12*yy12;for m=1:6hh13=245+(m-3)*5;yy13=(4002-(hh13)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-yy11-yy12;ss13=hh13*yy13;for n=1:6hh14=225+(n-3)*5;yy14=(4002-(hh14
32、)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-yy11-yy12-yy13;ss14=hh14*yy14;for o=1:6hh15=205+(o-3)*5;yy15=(4002-(hh15)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-yy11-yy12-yy13-yy14;ss15=hh15*yy15;for p=1:6hh16=185+(p-3)*5;yy16=(4002-(hh16)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-y
33、y11-yy12-yy13-yy14-yy15;ss16=hh16*yy16;for q=1:6hh17=165+(q-3)*5; yy17=(4002-(hh17)2)(1/2)-yy1-yy2-yy3-yy4-yy5-yy6-yy7-yy8-yy9-yy10-yy11-yy12-yy13-yy14-yy15-yy16;64 ss17=hh17*yy17;ss=ss1+ss2+ss3+ss4+ss5+ss6+ss7+ss8+ss9+ss10+ss11+ss12+ss13+ss14+ss15+ss16+ss17;if maxssmax=ss;hh=hh1,hh2,hh3,hh4,hh5,hh6
34、,hh7,hh8,hh9,hh10,hh11,hh12,hh13,hh14,hh15,hh16,hh17;yy=yy1,yy2,yy3,yy4,yy5,yy6,yy7,yy8,yy9,yy10,yy11,yy12,yy13,yy14,yy15,yy16,yy17;sss=ss1,ss2,ss3,ss4,ss5,ss6,ss7,ss8,ss9,ss10,ss11,ss12,ss13,ss14,ss15,ss16,ss17;endend,end,end,end,end,end,end,end,end,end,end,end,end,endendend7.3 附录 3t=s;for i=length(s)-1:-1:1t=t s(i); %将 23 级面积全部合并为一数组endnn=squre/7; %平均分割时的面积ss=0;w=30000; %误差设置的初始值sss=;while length(sss)=7w=w-1000;for i=1:23ss=ss+t(i);if nn-w=ss=nn+wsss=union(sss,ss);ss=0;endendendsss %油道分割的各级面积