1、0水资源规划与利用- 沅水五强溪水库水利计算 姓 名: 学 号: 专 业: 时 间: 沅水五强溪水库水利计算1目 录1 基本情况31.1 流域概况31.2 开发任务31.3 设计任务41.4 设计前提41.5 设计内容51.6 设计原始资料52 兴利计算102.1 基本资料整理102.2 死水位的确定102.3 保证出力计算132.4 水电站必需容量选择152.5 水电站调度图绘制162.6 重复容量选择与多年平均电能计算203 防洪计算243.1 水库调洪计算243.2 坝顶高程的确定262附表45附图70沅水五强溪水库水利计算31 基本情况1.1 流域概况五强溪水电站位于湖南省沅陵县境内,
2、上离沅陵县城 73km,下距常德市 130km。坝址控制流域面积 83800km2,占沅水总流域面积的 93%,流域雨量充沛,水量丰富,坝址多年平均流量 2060m3/s,年水量649108m3,并有 1925 年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。1.2 开发任务五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发
3、任务分述如下:1发电五强溪水电站建成后投入华中电网,主要供电范围为湖南省。2防洪沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口 106 万,农水 159 万亩。现有河道的泄洪能力 20000m3/s,如遇1927、1931、1933、1935、1943、1949、1954、1969 等年洪水重现,4河道均不能完全承泄,防洪标准仅为 5 年一遇。五强溪水库靠近沅水尾闾,控制全流域面积的 93%,解决尾闾防洪问题,是它的基本防洪任务。3航运五强溪水电站的航运效益为改善水库区和坝下游河道的通航条件。沅水是湘西的水上交通动脉,其
4、干流全长 1550km,通航里程为640km,但航道险滩很多。五强溪水库修建以后,坝址以上,沅水以下河段成为常年深水区,其险滩都将淹没。下游航道,确定五强溪航运基荷按 10 万 kw 相应流量考虑,枯水流量加大,上、下游航道均可改善。4灌溉每年自 5 月下旬至 9 月下旬为灌溉季节,在该季节自水库上游直接引走的灌溉流量平均为 35m3/s。1.3 设计任务本次设计任务是对五强溪水电站的诸方案(即正常蓄水位)已给的情况下,进行水库的兴利与防洪计算,确定各方案水利设备的参数,水库的调节操作方式及计算水利指标,并通过经济分析,比较方案之优劣。1.4 设计前提1本水利枢纽是以发电、防洪为主要目标的综合
5、利用水库;2水电站参加系统工作,发电设计保证率 P=87.5%(按年份计) ;沅水五强溪水库水利计算53水电站的备选方案(正常蓄水位)见表 1.1;表 1.1 备选方案正常蓄水位表方 案 正常蓄水位(m) 120 115 108 1004本水利枢纽根据国家规定属一级,以千年一遇洪水为设计标准,万年一遇洪水为校核标准,电站使用年限为 50 年计;5水库库区蒸发渗漏等水量损失不大,故在初步设计阶段暂时不考虑;6水库下游有防洪要求,设计标准为二十年一遇洪水,安全泄洪流量 q 安 =20000m3/s。1.5 设计内容1水电站死水位选择及保证出力 NP 计算;2水电站装机容量选择;3绘制水电站调度图的
6、防破坏线,加大出力辅助线,确定汛期限制水位;4求重复容量,计算水电站多年平均电能;5进行防洪计算,确定各种防洪特征水位及坝顶高程;6求水利指标;7经济计算,比较方案优劣。1.6 设计原始资料1坝址以上流域面积 F=83800km2;62坝址断面历年月平均流量资料(见附表一) ;3水库水位面积、库容曲线见表 1.2;4坝址下游水位流量关系曲线见表 1.3;5为改善下游通航条件,确定五强溪航运基荷按 10kw 计;6船闸操作需要耗用 10m3/s,此部分流量不能用来发电;表 1.2 水库水位面积、库容曲线表 高程(m) 50 60 70 80 90 100 110 120 130 140面积( k
7、m2) 0 7.240 20.503 39.491 64.988 111.184 187.915 297.288 462.987 647.004108m3 0 0.241 1.592 4.521 49.692 18.490 33.346 57.349 95.058 151.578容积 m3/s.月 0 9.175 60.65 172.13 369.0 703.96 1269.57 2183.43 3619.11 5770.97表 1.3 坝址下游水位流量关系曲线表水位m流量m3/s水位m流量m3/s水位m流量m3/s水位m流量m3/s48.5 204 53.0 3320 57.5 9470 6
8、6.0 2520049.0 350 53.5 3360 58.0 10300 67.0 2720049.5 545 54.0 4420 59.0 12000 68.0 2930050.0 795 54.5 5040 60.0 13700 69.0 3160050.5 1120 55.0 5720 61.0 15600 70.0 3380051.0 1490 55.5 6450 62.0 17500 71.0 3600051.5 1900 56.0 7200 63.0 19300 72.0 3830052.0 2350 56.5 7950 64.0 21200 73.0 40300沅水五强溪水库
9、水利计算752.5 2820 57.0 9700 65.0 23200 74.0 434007每年 5 月下旬至 9 月下旬为灌溉季节,在该季节自水库上游直接引走的灌溉流量平均为 35.0m3/s,此部分流量亦不能用来发电;8在沅水规划中,五强溪水电站上游将干流的虎皮溪及酉水的风滩(已建成)梯级,其尾水水位 124m 及 114.2m,各正常蓄水位方案对上游风滩的影响见表 1.4;表 1.4 各正常蓄水位方案对上游风滩的影响方案(正常蓄水位) ( 120m)(115m) (108m) (100m)N(kw) 0.284 0.02 0 0减少风滩E(亿kw.h)0.228 0 0 09沅水尾闾洪
10、灾情况、洞庭湖分分蓄洪提防基本情况见表1.5、1.6;表 1.5 沅水尾闾历年洪灾情况年份 常德最大流量(m 3/s) 洪 灾 情 况1927 24800 酉水特大洪水,尾闾未见灾情记载1931 29700 尾闾淹田 100 万亩,淹死 3049 人1933 30400 桃源淹田 11.4 万亩,汉寿受灾 11.5 万人81935 29900 尾闾淹田 93 万亩,淹死 3430 人1938 20600 黔阳淹 5 万余亩,尾闾未见灾情记载1943 28600 沅陵、桃源灾情较重,常德、汉寿未见灾情记载1949 24700 尾闾淹田 71 万亩,受灾 35 万人1954 24300 尾闾淹田
11、73 万亩1969 27300 尾闾淹田 4.7 万亩,受灾 3.3 万人1970 22900 安江一带灾情严重,尾闾无灾1974 21700表 1.6 历年较大洪水所需拦洪量 单位:10 8m3年份 1933 1931 1935 1949 1969 1954 1970 1974 1938拦洪量 15.2 13.6 10.1 待算 6.5 6.2 2.31 1.38 0.3110五强溪水库入库设计洪水过程线(见附表二) ;11水库最大吹程 15km,设计风速 12km/s;12各方案泄洪建筑物参数见表 1.7;表 1.7 各方案泄洪建筑物参数表方 案泄洪建筑物 (120m) (115m) (1
12、08m) (100m)孔 数 10 12 12 14坝顶高程(m) 108 101 94 84溢洪坝孔 口 尺 寸 ( 宽 高 )1512 1514 1514 1516沅水五强溪水库水利计算9孔 数 1 1 1 0底坎高程(m) 82 82 82 0中孔 孔 口 尺 寸 ( 宽 高 )138 138 138 0102 兴利计算沅水五强溪水电站水库正常蓄水位共有120m、115m、108m、100m 四个方案,本次设计将对这四个方案进行比较,并选定最优方案。2.1 基本资料整理设计原始资料给定的流量是坝址断面历年平均流量,考虑工程实际,现对其平均流量(附表一)数据进行处理:扣除灌溉和船闸用水。灌
13、溉用水按 5 月下旬至 9 月下旬的灌溉季节每月扣除 35 m3/s(5 月扣除 11.7 m3/s,七、八月扣除 35 m3/s,9 月扣除 22.3m3/s) ; 船闸运行用水按每月 10 m3/s 的流量扣除,从而得到新的年平均发电流量表(附表三) 。2.2 死水位的确定死水位影响因素比较复杂,需考虑保证水库灌溉要求、满足泥沙淤积要求、保证水电站最低水头要求以及航运、养殖等其它要求。本次设计对死水位的确定采用简化处理的办法,主要考虑水库的使用寿命及泥沙淤积;灌溉、航运、养殖及旅游等综合利用要求;水轮机最小水头的限制三个因素。各方案分述如下:2.2.1 正常蓄水位 120m 方案(方案一)
14、1水库的使用寿命及泥沙淤积使用寿命 T 按 50 年计,年淤积量 V 年 为 669 万 m3V 淤 =V 年 T =66950=33450 万 m3沅水五强溪水库水利计算11查库容水位曲线表,确定水库在使用年限内满足防淤要求的死水位 Z1=76.20m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于 Z2=82.00m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的 35%。(1)任意假定最小发电流量 q(0) ,并相应下游 Z 下 (0) 。最小发电流量取 q(0) =800 m3/s,查表得下游水位 Z 下 (0)=50.05m。(2) 极限削落深度hm=
15、(Z 正 Z 下 (0) )35%=(12050.05) 35%=24.48m死水位:Z 3=Z 正 h m=12024.48=95.52m(3)Z 死 (0)=max(Z1,Z 2,Z 3)=max(76.80,82.00,95.52)=95.52m;(4)根据 Z3(0)长系列计算各年供水期调节流量 qp=799.28 m3/s,并满足| q(0) qp|=0.72 m3/s=1m 3/s,则 Z 死 =Z 死 (0) =95.52m。即死水位为 95.52m,相应死库容 14.002 亿 m3。2.2.2 正常蓄水位 115m 方案(方案二)1水库的使用寿命及泥沙淤积水库在使用年限内满足
16、防淤要求的死水位 Z1=76.20m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于 Z2=82.00m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头12的 35%。(1)任意假定最小发电流量 q(0) ,并相应下游 Z 下 (0) 。最小发电流量取 q(0) =733 m3/s,查表得下游水位 Z 下 (0)=49.88m。(3) 极限削落深度hm=(Z 正 Z 下 (0) )35%=(11549.88) 35%=22.79m死水位:Z 3=Z 正 h m=11522.79=92.21m(3)Z 死 (0)=max(Z1,Z 2,Z 3)=max(76.80,
17、82.00,92.21)=92.21m;(4)根据 Z3(0)长系列计算各年供水期调节流量 qp=733.08 m3/s,并满足| q(0) qp|=0.08 m3/s=1m 3/s,则 Z 死 =Z 死 (0) =92.21m。即死水位为 92.21m,相应死库容 11.353 亿 m3。2.2.3 正常蓄水位 108m 方案(方案三)1水库的使用寿命及泥沙淤积水库在使用年限内满足防淤要求的死水位 Z1=76.20m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于 Z2=82.00m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的 35%。(1)任意假定最小发
18、电流量 q(0) ,并相应下游 Z 下 (0) 。最小发电流量取 q(0) =644m3/s,查表得下游水位 Z 下 (0)=49.70m。(4) 极限削落深度沅水五强溪水库水利计算13hm=(Z 正 Z 下 (0) )35%=(10849.70) 35%=20.41m死水位:Z 3=Z 正 h m=10820.41=87.59m(3)Z 死 (0)=max(Z1,Z 2,Z 3)=max(76.80,82.00,87.59)=87.59m;(4)根据 Z3(0)长系列计算各年供水期调节流量 qp=644.32 m3/s,并满足| q(0) qp|=0.32 m3/s=1m 3/s,则 Z 死
19、 =Z 死 (0) =87.59m。即死水位为 87.59m,相应死库容 8.346 亿 m3。2.2.4 正常蓄水位 100m 方案(方案四)1水库的使用寿命及泥沙淤积水库在使用年限内满足防淤要求的死水位 Z1=76.20m;2灌溉、航运、养殖及旅游等综合利用要求,水库削落的最低水位不得小于 Z2=82.00m;3水轮机最小水头的限制,水库削落深度不大于水电站最大水头的 35%。(1)任意假定最小发电流量 q(0) ,并相应下游 Z 下 (0) 。最小发电流量取 q(0) =568m3/s,查表得下游水位 Z 下 (0)=49.55m。(5) 极限削落深度hm=(Z 正 Z 下 (0) )3
20、5%=(10049.55) 35%=17.66m死水位:Z 3=Z 正 h m=10017.66=82.34m(3)Z 死 (0)=max(Z1,Z 2,Z 3)=max(76.80,82.00,82.34)=82.34m;(4)根据 Z3(0)长系列计算各年供水期调节流量 qp=567.79 m3/s,并满足| q(0) qp|=0.21 m3/s=1m 3/s,则 Z 死 =Z 死 (0) =82.34m。即死14水位为 82.34m,相应死库容 5.55 亿 m3。2.3 保证出力计算本次设计要求长系列等出力操作;用试算法逐年求解以下方程组:Vt-I,Vtt 时段初、末水库蓄水量;Qtt
21、 时段平均入库流量(新系列) ;qt t 时段平均发电流量;Ht t 时段平均水头;Vt供水期末水库蓄水量。2.3.1 计算方法对某一特定年份求解步骤如下:1设 Np=N(0)(1)设 qt=q(0) (qt 为 t 时段发电流量);(2)V t=Vt-1+(Qtq t)t (当 VtV 兴 +V 死 ,取 Vt=V 兴 +V 死 )(3)由 V 均 =(Vt+Vt-1)/2 查水位库容曲线得到 Z 上 ;由 qt 查坝址下游水位流量关系曲线得到 Z 下 ;(4)N t=Kqt(Z 上 Z 下 )(5)若|N tN p| 1,转下时段;否则qt=q(0)+(tNpN t)/K(Z 上 Z 下
22、),转(2)步骤计算。Vt=Vt-1+(Qtq t) tNp=KqtHtV0=V 死沅水五强溪水库水利计算152求年最小水库蓄水量 Ve;3若|V e V 死 | 2,转下一年;否则Np=N(0)+K(Z 正 +Z 死 )/2Z 下 (Z 死 V e)/T 供 转(1)步骤计算。求出各年的供水期平均出力后,据设计保证率可求出 Np。2.3.2 计算结果本次设计采用程序计算,各方案具体参数及结果如下:1方案一:正常库容 57.349 亿 m3,死库容 14.002 亿 m3,兴利库容 43.347 亿 m3。设计保证出力 Np=41.33 万 kw。2方案二:正常库容 43.357 亿 m3,死
23、库容 11.353 亿 m3,兴利库容 32.004 亿 m3。设计保证出力 Np=35.34 万 kw。3方案三:正常库容 29.424 亿 m3,死库容 8.346 亿 m3,兴利库容 21.078 亿 m3。设计保证出力 Np=27.84 万 kw。4方案四:正常库容 18.490 亿 m3,死库容 5.55 亿 m3,兴利库容12.94 亿 m3。设计保证出力 Np=21.46 万 kw。2.4 水电站必需容量选择必需容量包括工作容量与备用容量两部分。2.4.1 工作容量计算本设计缺少电力平衡的资料,采用经验方法确定工作容量如下(按方案一计算):1保证出力中部分担任航运基荷:N 工基
24、=10 (万 kw)2N 峰为担任峰荷工作容量16N 峰 = Np N 工基 =41.3310=31.33 (万 kw)3按以下关系确定峰荷工作容量N 工峰 = 3.08N 峰 7=103.50 (万 kw)4水电站工作容量N 工 = N 工峰 N 工基 =103.5010=113.50 (万 kw)2.4.2 备用容量计算本设计电站担任系统负荷用及事故备用容量,各方案取值见表2.1。表 2.1 各方案备用容量表方 案 120m 115m 108m 100mN 备 (万kw)30 25 20 152.4.3 电站必需工作容量经计算,沅水五强溪水电站各方案必需工作容量见表 2.2。表 2.2 各
25、方案必需工作容量表方 案 120m 115m 108m 100mN 工基 (万kw)10 10 10 10N 工峰 (万kw)103.50 85.05 61.95 42.30沅水五强溪水库水利计算17N 工 (万kw)113.50 95.05 71.95 52.30N 备 (万kw)30 25 20 15N 必需 (万kw)143.50 120.05 91.95 67.302.5 水电站调度图绘制本次毕业设计要求从兴利要求出发对水电站调度要求作两条线,一条是基本调度线防破坏线;一条是加大出力辅助线。2.5.1 防破坏线防破坏线按下列步骤计算确定。1择设计保证率范围内的径流系列(新系列)资料。
26、(从原始系统中剔除来水小于设计枯水年的年份)2年从供水期水期末开始,按 Np 等出力逆时序操作,求得各年迟蓄方案水库蓄水量过程线。具体求解方程组:式中符号意义同前。其具体求解流程如下:Vt-1=Vt(Q tq t)tNp=KqtHt18(1)设 qt=q(0);(2)V t-1=Vt(Q tq t)t (Vt 起始值为 V 死 ) (当 Vt-1V 死 ,取Vt-1=V 死 ) ;(3) V 均 =(Vt+Vt-1)/2 查水库水位库容曲线得到 Z 下 ;(4)N t=Kqt(Z 上 Z 下 );(5)若|N tN p| ,转前时段,否则qt=q(0)+(NpN t)/K(Z 上 Z 下 )
27、,转()步骤3将各年迟蓄方案水库蓄水量过程线点在一张图,并取其外包线,即为防破坏线。此外包线,实际上是各条蓄水量过程线的同时纵坐标最大值,在具体操作时,可在计算机算完第()步后,直接给出外包线各点坐标,当然最后采用值,还应输出结果作适当分析修正,使防破坏线更可靠。经采用程序计算,各方案防破坏线的结果见表 2.3。表 2.3 各方案防破坏线计算结果表水库蓄水量(m 3/s.月)月份方案一 方案二 方案三 方案四3 716.68 541.85 331.42 218.224 553.31 442.91 321.63 218.225 767.66 592.51 373.99 218.226 1243.
28、28 960.96 633.81 358.6沅水五强溪水库水利计算197 2181.74 1630.32 988.87 523.418 2059.14 1555.93 973.69 565.579 2183.44 1726.5 1156.45 662.7310 2029.04 1631.08 1141.32 703.9611 1830 1440.75 974.09 639.5412 1587.24 1264.13 863.24 545.341 1260.19 1005.4 689.5 432.932 1015.32 824.85 599.12 406.143 553.31 442.91 321
29、.63 218.222.5.2 防洪限制水位确定防洪限制水位是体现防洪与兴利相互结合的重要参数。选择恰当,可在不影响兴利可靠性前提下,降低大坝高度,节省投资。本设计以获得最大结合库容为原则选择。根据五强溪水电站洪水资料分析,该库洪水最迟发生在月底,月初:故防洪限制水位取值为月底,月初防洪线上的坐标值。经计算并查水库水位库容曲线,各方案防洪限制水位和相应库容分别为:方案一:防洪限制水位为 120.00m,库容为 57.349 亿 m3;方案二:防洪限制水位为 115.00m,库容为 43.67 亿 m3;方案三:防洪限制水位为 105.99m,库容为 26.49 亿 m3;方案四:防洪限制水位为
30、 95.67m,库容为 14.02 亿 m3。20防洪限制水位作为调洪演算的起调水位,并据此可求出结合库容。2.5.3 加大出力辅助线的绘制在防破坏图中,在汛期防洪限制水位与破坏线间,为加大出力区,但加大出力范围较大,为减少操作的任意性,在该区中增加三条辅助线,采用简化的方法确定该组辅助线。具体如下:Zit=Z 死 +( Z 防限 Z 死 )i/4式中:Z it 为第 i 条加大出力线 t 时刻的坐标。经计算各方案结果见表 2.4。表 2.4 各方案加大出力辅助线参数表正常水位 120m 115m 108m 100m死水位(m) 95.52 92.21 87.59 82.34汛限水位(m) 1
31、20.00 115.00 105.99 95.67Z1t(m) 101.64 97.92 92.19 85.67Z2t(m) 107.76 103.63 96.79 89.01Z3t(m) 113.88 109.33 101.39 92.34V1t(亿 m3) 20.45 16.29 11.25 7.11V2t(亿 m3) 28.94 23.04 15.19 9.05V3t(亿 m3) 41.48 32.14 20.12 11.36由表 2.4 绘出加大出力辅助线。三条辅助线将加大出力值计算公式如下:Ni=Np+(N yN p)4i各方案计算结果见表 2.5。表 2.5 各方案加大出值计算表正
32、常水位 120m 115m 108m 100mNp(万 kw) 41.33 35.34 27.84 21.46沅水五强溪水库水利计算21Ny(万 kw) 143.50 126.05 120.12 67.30N1(万 kw) 66.87 58.02 50.91 32.92N2(万 kw) 92.42 80.70 73.98 44.38N3(万 kw) 117.96 103.37 97.05 55.842.6 重复容量选择与多年平均电能计算2.6.1 重复容量选择水电站在洪水期往往会产生大量弃水,为了利用弃水增发季节性电能,节省火电站的燃料消耗,增加一部分装机容量,由于它不能替代火电站的工作容量,
33、因而称它为重复容量。本次设计 N 重 采用经济利用小时数 h 经济 =2500h。补充千瓦利用小时数计算是确定重复容量的关键,但其核心是计算不同重复容量的多年平均电能,多年平均电能的计算与调度图或调度规划有关,本次设计调度按以下规则操作:1当时段初水位位于防破坏线内时,时段出力 Nt=Np。2汛期时段初水位位于加大出力区时,按加大出力线工作,即Nt=Ni。3段初水位在防破坏线以上时,使时段水位尽可能向防破坏线上靠,同时要考虑装机容量的限制。4当满装机发电,且水位超过 Z 防限 或 Z 正 时,才允许弃水。现以方案一计算重复容量的选择及多年平均电能计算。假设重复容量 N 重 等于 0、5、10、
34、15、20 万 kw 时,分别计算新系列多年平均发电量 E 及重复容量年利用小时数 h,计算结果见表 2.6。因重复容量22年利用小时数 h 均小于 h 经济 =2500h,故方案一重复容量为 0。表 2.6 重复容量计算表(方案一)必需容量(万 kw)重复容量(万 kw)装机容量(万 kw)多年平均发电量 (亿kw.h)年发电量差值(亿 kw.h) E 利用小时数(h)143.50 0 143.50 75.24143.50 5 148.50 76.24 1.00 2000143.50 10 153.50 77.25 1.01 2020143.50 15 158.50 78.31 1.06 2
35、120143.50 20 163.50 79.21 0.90 1800其余三个方案的多年平均发电量 E 及重复容量年利用小时数 h 计算结果见表 2.7表 2.9。从表 2.9 可以看出,方案四的重复容量年利用小时数 h 均小于 h 经济 =2500h,故方案四重复容量为 0。根据表 2.7 和表 2.8 中计算结果,点绘 N 重 h 利 曲线,再根据 h 经济 =2500h 确定方案二 N 重 =6 万 kw;方案三 N 重 =28.17 万 kw。表 2.7 重复容量计算表(方案二)必需容量(万 kw)重复容量(万 kw)装机容量(万 kw)多年平均发电量 (亿kw.h)年发电量差值(亿
36、kw.h) E 利用小时数(h)120.05 0 120.05 69.15120.05 2 122. 05 69.61 0.46 2300120.05 4 124.05 70.12 0.51 2550沅水五强溪水库水利计算23120.05 6 126.05 70.62 0.50 2500120.05 8 128.05 71.04 0.42 2100表 2.8 重复容量计算表(方案三)必需容量(万 kw)重复容量(万 kw)装机容量(万 kw)多年平均发电量 (亿kw.h)年发电量差值(亿 kw.h) E 利用小时数(h)91.95 0 91.95 58.6791.95 10 101.95 62
37、.07 3.40 340091.95 20 111.95 66.35 4.28 428091.95 30 121.95 68.63 2.28 228091.95 40 131.95 70.64 2.01 2010表 2.9 重复容量计算表(方案四)必需容量(万 kw)重复容量(万 kw)装机容量(万 kw)多年平均发电量 (亿kw.h)年发电量差值(亿 kw.h) E 利用小时数(h)67.30 0 67.30 34.3767.30 2 69.30 34.81 0.44 220067.30 4 71.30 35.23 0.42 210067.30 6 73.30 35.63 0.40 2000
38、67.30 8 75.30 36.01 0.38 19002.6.2 装机容量的确定装机容量由必须容量和重复容量确定,但由于回水对上游风滩电站的影响,应在方案一和方案二中扣除风滩电站的多年平均减少电能。24各方案的装机容量分别为:方案一:N y=N 必 +N 重 =143.50+0=143.50 万 kw;方案二:N y=N 必 +N 重 =120.05+6=126.05 万 kw;方案三:N y=N 必 +N 重 =91.95+28.17=120.12 万 kw;方案四:N y=N 必 +N 重 =67.30+0=67.30 万 kw。2.6.3 多年平均电能计算利用上述计算结果点绘 Ny(
39、N y=N 必 +N 重 )E 的关系图,查得各方案多年平均发电量。方案一:E=75.240.228=75.012 亿 kw.h;方案二:E=70.620=70.62 亿 kw.h;方案三:E=68.29 亿 kw.h;方案四:E=34.37 亿 kw.h;沅水五强溪水库水利计算253 防洪计算3.1 水库调洪计算五强溪水库工程等别为一等,按 P=0.1%洪水标准设计、P=0.01%洪水标准校核。水库下游防洪标准为 P=5%,安全泄洪量 q 安=20000m3/s。本次设计防洪计算的任务包括上述三种洪水标准的调洪计算。利用五强溪水库入库典型洪水,调洪计算采用多级调节方法,具体的调洪规则如下:1
40、起调水位为汛前限制水位。2当水库洪水流量小于汛前限制水位相应的下泄能力,且小于安全泄量时,控制闸门,让泄流量等于来水量水库水位维持在汛期水位不变。3当水库入流量超过汛前限制水位相应的下泄能力,而小于下游安全泄量时,打开闸门自由泄流,水库水位上升,下泄量随之增大。4当自由泄流量超过安全泄量时,控制 qt=q 安 ,直至调节计算结束,所得最高水位为防洪高水位。5当水库水位不及防洪高水位时,控制 qt=q 安 ,当水库水位升高至防洪高水位时,闸门全开,自由泄流,得调洪后的最高水位。溢洪设备的选择本身是一个经济问题,它是权衡上下游洪灾损失的重要参数,而且泄洪设备还受材料最大应力强度及闸门结构限制、下游
41、岩基状况及消能设备情况的影响。26自由泄流时采用公式:Q=1.77nBH 3/2;孔口出流是采用公式:Q=n (2gH) 1/2;=0.990.53a/H对于千年一遇洪水调节计算得设计洪水水位及相应最大下泄流量,对万年一遇洪水进行调节计算得校核水位及相应最大下泄流量,并根据求得的校核洪水位,确定总库容。在调洪计算过程中,对闸门控制泄流情形,利用水量平衡方程式推求求得,但对于自由泄流情形则需求解隐式方程组。Vt=Vt1 +(Qt+Qt1 )/2(q t+qt1 )/2tq=f(v)本次设计按如下步骤试算求解:、假定 qt=q(0);、V t=Vt1 +(Qt+Qt1 )/2(q t+qt1 )/
42、2t ;、由 Vt 查 q=f(v) 曲线得相应下泄流量 q(1) ;、若|q (0)q (1)| ,转下时段,否则假定 q(0)=q(1)重新进行计算。、确定防洪高水位、设计洪水位及校核洪水位,确定相应库容。各方案水库调洪计算结果见表 3.1。各方案水库调洪计算详细结果见附表。沅水五强溪水库水利计算27表 3.1 水库各方案调洪计算成果表项 目 单位 方案一 方案二 方案三 方案四正常蓄水位 m 120 115 108 100正常库容 亿 m3 57.349 43.357 29.424 18.490汛限水位 m 120 115 105.99 95.67汛限库容 亿 m3 57.349 43.
43、357 26.49 14.02死水位 m 95.52 92.21 87.59 82.34死库容 亿 m3 14.002 11.353 8.346 5.550防洪高水位 m 122.40 115.89 108.90 100.07防洪库容 亿 m3 7.561 2.753 4.834 4.549设计洪水位 m 131.74 124.41 118.81 109.41校核洪水位 m 135.29 128.37 122.51 112.78调洪库容 亿 m3 65.451 44.317 38.785 24.913总库容 亿 m3 122.80 87.674 65.275 38.9333.2 坝顶高程的确定
44、坝顶高程计算公式如下:坝顶高程 1=设计洪水+ 风浪高+安全超高 1坝顶高程 2=校核洪水+ 风浪高 2+安全超高 2坝顶高程=max坝顶高程 1,坝顶高程 2风浪高的计算公式;h=0.0208V 5/4D1/328式中 V 为风速,以 m/s 计,设计风速 12m/s,校核洪水时风速乘以 0.8;D 为吹程,为 15km 计。安全超高由规范据坝质、坝型而规定(0.51.0m) 。设计洪水时取 0.7m,校核洪水时取 0.5m。经计算:h 设计 =1.15m;h 校核 =0.87m。则各方案坝顶高程为:方案一:坝顶高程 1=133.59m;坝顶高程 2=136.66m。坝顶高程=max坝顶高程
45、 1,坝顶高程 2=136.66m。方案二:坝顶高程 1=126.26m;坝顶高程 2=129.74m。坝顶高程=max坝顶高程 1,坝顶高程 2=129.74m。方案三:坝顶高程 1=120.66m;坝顶高程 2=123.88m。坝顶高程=max坝顶高程 1,坝顶高程 2=123.88m。方案四:坝顶高程 1=111.26m;坝顶高程 2=114.15m。坝顶高程=max坝顶高程 1,坝顶高程 2=114.15m。五强溪水电站各项水利指标见表 3.2。沅水五强溪水库水利计算29表 3.2 水利指标成果统计表指 标序号 项 目 单位方案一 方案二 方案三 方案四1 正常高水位 m 120 11
46、5 108 1002 设计洪水位 m 131.74 124.41 118.81 109.413 校核洪水位 m 135.29 128.37 122.51 112.784 死水位 m 95.52 92.21 87.59 82.345 防洪限制水位 m 120 115 105.99 95.676 防洪高水位 m 122.40 115.89 108.90 100.077 总库容 108m3 122.80 87.674 65.275 38.9338 兴利库容 108m3 43.347 32.004 21.078 12.949 防洪库容 108m3 7.561 2.753 4.834 4.54910 结
47、合库容 108m3 0 0 2.934 4.4711 设计洪水最大泄流量 m3/s 35574 40732 43993 4920512 校核洪水最大泄流量 m3/s 42940 50267 53290 5900413 保证出力 104kw 41.33 35.34 27.84 21.4614 工作容量 104kw 113.50 95.05 71.95 52.3015 备用容量 104kw 30 25 20 1516 重复容量 104kw 0 6 28.17 017 重复容量年利用小时 h 0 2500 2500 018 径流利用系数19 装机容量 104kw 143.50 126.05 120.12 67.3020 多年平均发电量 108kw.h 75.