1、空间直角坐标系空间点的直角坐标系为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。过定点 O,作三条互相垂直的数轴,它们都以 O 为原点且一般具有相同的长度单位.这三条轴分别叫做 x 轴(横轴) 、y 轴(纵轴)、z 轴(竖轴);统称坐标轴.通常把 x 轴和 y 轴配置在水平面上,而 z 轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住 z 轴,当右手的四指从正向x 轴以 /2 角度转向正向 y 轴时,大拇指的指向就是 z 轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点 O 叫做坐标原点。 (如下图所示)三条坐标轴中的任
2、意两条可以确定一个平面,这样定出的三个平面统称坐标面。取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。例:设点 M 为空间一已知点.我们过点 M 作三个平面分别垂直于 x 轴、y 轴、z 轴,它们与 x轴、y 轴、z 轴的交点依次为 P、Q、R,这三点在 x 轴、y 轴、z 轴的坐标依次为 x、y、z. 于是空间的一点 M 就唯一的确定了一个有序数组 x,y,z.这组数 x,y,z 就叫做点 M 的坐标,并依次称 x,y和 z 为点 M 的横坐标,纵坐标和竖坐标。(如下图所示) 坐标为 x,y,z 的点 M 通常记为 M(x,y,z).这样,通过空间直角坐标系,我们就建立
3、了空间的点 M 和有序数组 x,y,z 之间的一一对应关系。注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.例:如果点 M 在 yOz 平面上,则 x=0;同样,zOx 面上的点,y=0;如果点 M 在 x 轴上,则y=z=0;如果 M 是原点,则 x=y=z=0,等。空间两点间的距离设 M1(x1,y1,z1)、M 2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离 d 我们有公式:例题:证明以 A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形 ABC 是一等腰三角形.解答:由两点间距离公式得:由于 ,所以ABC 是一等腰三角形方向余弦与方向数解析几何
4、中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。方向角与方向余弦设有空间两点 ,若以 P1 为始点,另一点 P2 为终点的线段称为有向线段.记作 .通过原点作一与其平行且同向的有向线段 .将 与 Ox,Oy,Oz 三个坐标轴正向夹角分别记作 ,.这三个角 , 称为有向线段 的方向角.其中 0,0,0.关于方向角的问题若有向线段的方向确定了,则其方向角也是唯一确定的。方向角的余弦 称为有向线段 或相应的有向线段的方向余弦。设有空间两点 ,则其方向余弦可表示为:从上面的公式我们可以得到方向余弦之间的一个基本关系式:注意:从原点出发的任一单位的有向线段的方向余弦就是
5、其端点坐标。方向数方向余弦可以用来确定空间有向直线的方向,但是,如果只需要确定一条空间直线的方位(一条直线的两个方向均确定着同一方位),那末就不一定需要知道方向余弦,而只要知道与方向余弦成比例的三个数就可以了。这三个与方向余弦成比例且不全为零的数 A,B,C 称为空间直线的方向数,记作:A ,B, C.即:据此我们可得到方向余弦与方向数的转换公式:, ,其中:根式取正负号分别得到两组方向余弦,它们代表两个相反的方向。关于方向数的问题空间任意两点坐标之差就是联结此两点直线的一组方向数。两直线的夹角设 L1 与 L2 是空间的任意两条直线,它们可能相交,也可能不相交.通过原点 O 作平行与两条直线
6、的线段 .则线段 的夹角称为此两直线 L1与 L2的夹角.若知道 L1 与 L2 的方向余弦则有公式为:其中: 为两直线的夹角。若知道 L1 与 L2 的方向数则有公式为:两直线平行、垂直的条件两直线平行的充分必要条件为:两直线垂直的充分必要条件为:曲面与空间曲线曲面的方程我们知道,在平面解析几何中可把曲线看成是动点的轨迹.因此,在空间中曲面可看成是一个动点或一条动曲线(直线)按一定的条件或规律运动而产生的轨迹。设曲面上动点 P 的坐标为(x,y,z),由这一条件或规律就能导出一个含有变量 x,y,z 的方程:如果此方程当且仅当 P 为曲面上的点时,才为 P 点的坐标所满足。那末我们就用这个方
7、程表示曲面,并称这个方程为曲面的方程,把这个曲面称为方程的图形。空间曲线的方程我们知道,空间直线可看成两平面的交线,因而它的方程可用此两相交平面的方程的联立方程组来表示,这就是直线方程的一般式。一般地,空间曲线也可以象空间直线那样看成是两个曲面的交线,因而空间曲线的方程就可由此两相交曲面方程的联立方程组来表示。设有两个相交曲面,它们的方程是 , ,那末联立方程组:便是它们的交线方程。两类常见的曲面1、柱面设有动直线 L 沿一给定的曲线 C 移动,移动时始终与给定的直线 M 平行,这样由动直线 L所形成的曲面称为柱面,动直线 L 称为柱面的母线,定曲线 C 称为柱面的准线。2、旋转面设有一条平面曲线 C,绕着同一平面内的一条直线 L 旋转一周,这样由 C 旋转所形成的曲面称为旋转面,曲线 C 称为旋转面的母线,直线 L 称为旋转面的轴。下面我们再列举出几种常见的二次曲面二次曲面的名称 二次曲面的方程椭球面单叶双曲面双叶双曲面椭圆抛物面双曲抛物面