1、空间直角坐标系教学目的:将学生的思维尤平面引导到空间,使学生明确学习空间解析几何的意义和目的教学重点: 1.空间直角坐标系的概念 2.空间两点间的距离教学难点:空间思想的建立一、空间点的直角坐标平面直角坐标系使我们建立了平面上的点与一对有序数组 之间的一一对应(,)xy关系,沟通了平面图形与数的研究。为了沟通空间图形与数的研究, 我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现。1、空间直角坐标系过空间一定点 ,作三条互相垂直的数轴,它们以 为原点,且一般具有相同的oo长度单位,这三条轴分别叫 轴(横轴)、 轴(纵轴)、 轴(竖轴), 且统称为坐标轴。xyz通常把 轴, 轴配置在水
2、平面上,而 轴则是铅垂线,它们的正方向要符合右xy手规则:右手握住 轴,当右手的四个指头从 轴的正向以 角度转向 轴正向时,大zx90y拇指的指向就是 轴正向。三条坐标轴就组成了一个空间直角坐标系,点 叫做坐标原点。o注明:为使空间直角坐标系画得更富于立体感,通常把 轴与 轴间的夹角画成x左右。当然,它们的实际夹角还是 。130902、坐标面 卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面。由 轴与 轴所决定的坐标面称为 面,另外还有 面与 面。xyxoyxozy三个坐标面把空间分成了八个部分,这八个部分称为卦限。3、空间点的直角坐标系取定空间直角坐标系之后,我们就
3、可以建立起空间点与有序数组之间的对应关系。设 为空间的一已知点,过 点分别作垂直于 轴、 轴、 轴的三个平面,MMxyz它们与 轴、 轴、 轴的交点依次为 ,这三点在 轴、 轴、 轴的坐标xyzRQP,依次为 ,于是:空间点就唯一地确定了一个有序数组 ,这组数叫 点, ,M的坐标。依次称 , , 为点 的横坐标、纵坐标和竖坐标,记为 。xyz()反过来,若已知一有序数组 ,我们可以在 轴上取坐标为 的点 ,在zyx,xxP轴上取坐标为 的点 ,在 轴取坐标为 的点 ,然后过 、 、 分别作yyQRQR轴、 轴、 轴的垂直平面,这三个平面的交点 就是以有序数组 为坐标xz Mzy,的空间点。这样
4、,通过空间直角坐标系,我们建立了空间点 和有序数组 之间的一x一对应关系。注明:空间点的位置可以由空间直角坐标系中的三个坐标唯一确定, 因此, 常称我们生活的空间为三度空间或三维空间 ”。 事实上,我们的生活空间应该是四度空间,应加上时间变量 。即: ,它表示在时刻 所处的空间位置是 。t(,)xyztt(,)xyz二、空间两点间的距离公式设 、 为空间的两点,则两点间的距离为Mxyz1(,)xyz2(,)d z12121()证明:过 、 各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以12为对角线的长方体,如图所示是直角三角形, 故MN12dNM12是直角三角形, 故PP1从而 22而 x1NQy1MRz22故 dz121()()()特别地,点 与坐标原点 的距离为x,O,0yz