1、总统巧证勾股定理学过几何的人都知道勾股定理它是几何中一个比较重要的定理,应用十分广泛迄今为止,关于勾股定理的证明方法已有 500 余种其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的事情的经过是这样的:在 1876 年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么只见一个小
2、男孩正俯着身子用树枝在地上画着一个直角三角形于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为 3 和 4,那么斜边长为多少呢?”伽菲尔德答道:“是 5 呀”小男孩又问道:“如果两条直角边分别为 5 和 7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于 5 的平方加上 7 的平方”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法他是这样分析的,如图所示:1876 年 4 月 1 日,伽菲尔德在新英格兰教育日志上发表了他对勾股定理的这一证法1881 年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法