收藏 分享(赏)

九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc

上传人:微传9988 文档编号:2449983 上传时间:2018-09-17 格式:DOC 页数:9 大小:513.50KB
下载 相关 举报
九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc_第1页
第1页 / 共9页
九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc_第2页
第2页 / 共9页
九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc_第3页
第3页 / 共9页
九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc_第4页
第4页 / 共9页
九年级数学第一章第一节:从梯子的倾斜程度谈起 教案(3).doc.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、一、学生知识状况分析本课是第九册第一章第一节从梯子的倾斜程度谈起的第二课时,由于学生在前一节课学习过有关正切的知识,但对于直角三角形只能停留在两直角边之间的关系,那么,直角三角形中斜边与直角边之间是否也存在着一定的关系呢?本节课首先通过实验的方法,让学生真正领会到直角三角形中斜边与直角边之间确实也存在着一定的关系。二、教学任务分析本课是第九册第一章第一节从梯子的倾斜程度谈起的第二课时,是通过实验的方法,让学生真正领会到直角三角形 中斜边与直角边之间确 实也存在着一定的关系,从而,探索出直角三角形中,一个锐角的直角边与斜边的比是随锐角的大小 变化而变化的。在试验过程中,不同学生对问题的理解是不一

2、样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生开展讨论,给学生提供成果展示的机会,培养学生的交流能力及学习数学的自信心.在学习的过程中,有些活动学生很容易就能得到结论,但要重视试验的作用。鼓励每一位学生亲自试验,要注意克服想当然的习惯、缺乏主动实践探索的意识,鼓励学生验证试验结果的合理性。来源:本节课教学目标如下:教学目标:(一)教学知识点:1.经历探索直角三角形中边角关系的过程.理解正弦、余弦的意义和与现实生活的联系.2.能够用 sinA,cosA 表示直角三角形中斜边与直角边的比,表示生活中物体的倾斜程度,能够用正弦、余弦进行简单的计算.(二)能力训练要求:1.体验数形

3、之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实 际问题的能力.2.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点:理解正弦、余弦的 数学意义,密切数学与生活的联系. 教学难点:理解正弦、余弦的数学意义,并用它来表示两边的比.三、教学过程分析本节课设计了六个教学环节:第一环节 创设情境;第二环节:探求新知;第三环节:随堂练习;第四环节:课堂小结;第五环节:课堂体会;第六环节:布置作业。第一环节 创设情境(1)我们 在上一节课学习了直角三角形中的一种

4、边与角的关系:锐角的三角函数-正切函 数。即:在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定.在 RtABC 中,锐角 A 的对边与邻边的比叫做A 的正 切,记作 tanA, 当 RtABC 中的一个锐角 A 确定时,其它边之间的比值也确定吗?今天这节课,我们就来学习第九册(下)第一章:直角三角形的边角关系:正弦与余弦。(2)上节课,我们研究了“陡”这个字,明确了梯子摆放的“陡”与“缓”,是与梯顶、 梯脚到墙角的距离比有关的。下面请同学们模拟实验,是否还与梯长与梯顶或梯脚到墙角的距离比有关呢?来源: 第二环节 探求新知1、摆一摆梯子越陡,倾斜角的对边与斜边的比

5、 值越大,邻边与斜边的比值越小。2、想一想:上节课,我们研究了:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺 来测量,我们可以用一种巧妙的方法得到梯子的倾斜程度:在梯子上任选一点 B1, 、 B2,如图 1-3,通过测量 B1C1及 AC1,算出它们的比,来说明梯子的倾斜程度;也可通过测量 B2C2及 AC2 ,算出它们的比,也能说明梯子的倾斜程度。在这里,我们能否类似的研究呢?(1)RtAB 1C1和 RtAB 2C2有什么关系?(2) 和 有什么关系? 和 有什么关系?2AB12AB1C(3)如果改变梯子的位置呢? 由此你得出什么结论?来源:数理化网3、有关的概念在 Rt

6、ABC 中,如果锐角 A 确定,那么A 的对边与斜边的比,叫做A 的正弦。记作 sinA.A 的邻边与斜边的比也随之确定,这个比叫做A 的余弦。记作 cosA.注意的问题:(1)sinA,cosA 中常省去角的符号“” 。(2)sinA,cosA 没有单位,它表示一个比值。(3)sinA,cosA 是一个完整的符号,不表示“sin”,“cos”乘以“A” 。(4)在初中阶段,sinA,cosA 中,A 是一个锐角。4、议一议:梯子的倾斜程度与 sinA,cosA 的关系:梯子 AB 越陡,sinA 的值越大 , cosA 的值越小 5、例题分析:例 1: 如图:在 Rt ABC 中,B=90

7、0,AC=200,sinA=0.6.求:BC的长.(老师期望:请你求出 cosA,tanA,sinC,cosC 和 tanC 的值.你敢应战吗?)例 2如图:在 RtABC 中,C=90 0,AC=10,cosA= ,求:AB,sinB132(老师期望:注意到这里 cosA=sinB,其中有没有什么内有的关系?)第三环节 随堂练习来源:1.如图:在等腰ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB来源:(老师提示:过点 A 作 AD 垂直于 BC 于 D. )2.在 RtA BC 中,C=90 0,BC=20,sinA= ,求:ABC54的周长来源:3.在 RtABC

8、 中,锐角 A的对边和邻边同时扩大 100 倍,sinA 的值( )A.扩大 100 倍 B.缩小 100 倍 C.不变 D.不能确定4.已知A,B 为锐角 (1)若A=B,则 sinA sinB; (2)若 sinA=sinB,则A B.5.如图, C=90CDAB. SinB= ( )=( )=( ) 6.在上图中,若 BD=6,CD=12.求 cosA 的值.来源:(老师提示:模型“双垂直三角形”的有关性质你可曾记得.)7.如图,分别根据下面两图,求出A 的三个三角函数值.8.在 RtABC 中,C=90, AC=3,AB=6,求 sinA 和 cosB (老师提示:求锐角三角函数时,勾

9、股定理的运用是很重要的.)9在等腰ABC 中,AB=AC=13,BC=10,求 sinB,cosB.B CAD来源:10.在梯形 ABCD 中,AD/BC,AB=DC=13,AD=8,BC=18求:sinB,cosB,tanB.(老师提示:作梯形的高是梯形的常用辅助,借助它可以转化为直角三角形.) CEA DFB第四环节 小结1.锐角三角函数定义:sinA,cosA,tanA, 是在直角三角形中定义的, A 是锐 角(注意数形结合,构造直角三角形).来源:sinA,cosA,tanA, 是一个完整的符号,表示A 的正切,习惯省 去“”号;sinA,cosA,tanA,是一个比值.注意比的顺序,

10、且 sinA,cosA,tanA,均0,无单位.sinA,cosA,tanA, 的大小只与A 的大小有关,而与直角三角形的边长无关.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.2请思考:在 RtABC 中, sin A 和 cosB 有什么关系? 第五环节 体会数学中的某些定理具有这样的特性:它们极易从事实中归纳出来 ,但证明却隐藏极深. 高斯第六环节 作业1.在ABC 中,AB=5,BC=13,AD 是 BC 边上的高,AD=4.求:CD,sinC.2.在 RtAB C 中,BCA=90,CD 是中线,BC=8,CD=5.求 sinACD,cosACD 和 tanA

11、CD.3.在 RtABC 中,C=90,sinA 和 cosB 有什么关系?4.在 RtABC 中,C=90,sinA 和 cosB 有什么关系?四、教学反思由于上节课学生学习了三角函数中的正切,所以本节课结合初中学生身心发展的特点,运用了类比法教学法,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维 到实践”的基本认识规律,运用好这些直观教学,能使学生学习数学的过程成为积极的愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程。来源: 数理化网附件 1:律师事务所反盗版维权声明附件 2:独家资源交换签约学校名录(放大查看)学校名录参见:http:/ /wxt/list.aspx?ClassID=3060

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报