1、12013 人教版初中数学知识点总结大全经典版独家揭秘哦 111导读:就爱阅读网友为您分享以下“2013 人教版初中数学知识点总结大全经典版独家揭秘哦 111”的资讯,希望对您有所帮助,感谢您对 的支持!平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。 第七章 三角形 一知识框架 2二知识概念 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组-
2、16 - 成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 37.多边形的内角:多边形相邻两边组成的角叫做它的内角。8.多边形的外角:多边形
3、的一边与它的邻边的延长线组成的角叫做多边形的外角。 9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 - 17 - 10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 12.公式与性质 三角形的内角和:三角形的内角和为 180 三角形外角的性质: 性质 1:三角形的一个外角等于和它不相邻的两个内角的和。 性质 2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n 边形的内角和等于(n-2)2180 多边形的外角和:多边形的内角和为 360
4、。 多边形对角线的条数:(1)从 n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2 )个三角形。 (2)n 边形共有 n(n-3)条对角线。 42 三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。 第八章 二元一次方程组 - 18 - 一知识结构图 二、知识概念 1.二元一次方程:含有两个未知数,并且未知数的指数都是 1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a0,b0)。 2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 3
5、.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。 - 19 - 55.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。 7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。 本章通过实例引入二元一次方程,二元
6、一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题 第九章 不等式与不等式组 一知识框架 - 20 - 七年级数学(上)知识点 6人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数 一 知识框架 二知识概念 1.有理数: (1)凡能写成 q(p,q 为整数且 p?0)形式的数,都是有理数.正整数、p0 、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是
7、正数,也不是负数;-a不一定是负数,+a 也不一定是正数;?不是有理数; - 1 - ?正整数?正有理数?正分数?有理数?零?负整数?负有理数?负分数?(2)有理数的分类: ?正整数?整数?零?有理数?负整数 ?正分数?分数?负分数? 2数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的7相反数;0 的相反数还是 0; (2)相反数的和为 0 ? a+b=0 ? a、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (
8、2) 绝对值可表示为:?a(a?0)(a?0)?a a?0(a?0)或 a?a(a?0)?a(a?0);绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)- 2 - 正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0. 6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a0,那么 a 的倒数是 1;若 ab=1? a、b 互为倒数;8a 若 ab=-1? a、b 互为负倒数. 7. 有理数加法法则: (1
9、)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数. 8有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+ (b+c). 9有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘;- 3 - (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:
10、(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab )c=a(bc) ; 9(3)乘法的分配律:a(b+c)=ab+ac . 12有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即 a 无意义. 013有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时 : (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫
11、做指数,乘方的结果叫做幂; 15科学记数法:把一个大于 10 的数记成 a310n 的形式,- 4 - 其中 a 是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运10算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习
12、数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。 第二章 整式的加减 一知识框架 - 5 - 二、知识概念 1.用符号“”“”“ ”“”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组11成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一般地,关于同一未知数的几个一
13、元一次不等式合在一起,就组成 6.了一个一元一次不等式组。 - 21 - 7.定理与性质 不等式的性质: 不等式的基本性质 1:不等式的两边都加上(或减去)同一个数(或式子) ,不等号的方向不变。 不等式的基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数12学的意识。 第十章 数据的收集、整理
14、与描述 一知识框架 全面调查 抽样调查 收集数据 整理数据 描述数据 分析数据 得出结论 - 22 - 二知识概念 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 8.频率:频数与数据总数的比为频率。 9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,
15、每一组两个端点的13差叫做组距。 本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。 - 23 - 八年级数学(上)知识点 人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和 整式的乘除与分解因式五个章节的内容。 第十一章 全等三角形 一知识框架 二知识概念 1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与- 24 - 14另一个重合,这两个三角形称为全等三角形。 2全等三角形的性质: 全等三角形
16、的对应角相等、对应边相等。 3.三角形全等的判定公理及推论有: (1) “边角边”简称“SAS” (2) “角边角”简称“ASA” (3) “边边边”简称“SSS” (4) “角角边”简称“AAS” (5)斜边和直角边相等的两直角三角形(HL) 。 4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。 5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系) ,、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解- 25 - 15百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆百度搜索“就爱阅读”,专业资料、生活学习,尽在就爱阅读网 ,您的在线图书馆!