1、课 题:3.3.2 均匀随机数的产生教学目标:1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯.2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力.教学重点:掌握0,1上均匀随机数的产生及a,b上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率.教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学方法:讲授法课时安排1 课时教学过程:一、导入新课1、复习提问:(1)什么是几何概型
2、?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.二、新课讲授:提出问题(1)请说出古典概型的概念、特点和概率的计算公式?(2)请说出几何概型的概念、特点和概率的计算公式?(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?(4)请你根据整数值随机数的产生,用计算器模拟产生0,1上的均匀
3、随机数.(5)请你根据整数值随机数的产生,用计算机模拟产生0,1上的均匀随机数.(6)a,b上均匀随机数的产生.活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.讨论结果:(1)在一个试验中如果a.试验中所有可能出现的基本事件只有有限个;(有限性)b.每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.古典概型计算任何事件的概率计算公式为:P(A)= .基 本 事 件 的 总 数 数所 包 含 的 基 本 事 件 的 个A(2)对
4、于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.几何概型的概率公式:P(A)= .)(面 积 或 体 积的 区 域 长 度试 验 的 全 部 结 果 所 构 成 面 积 或 体 积的 区 域 长 度构 成 事 件 A(3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地
5、得到所求事件的概率,对于几何概型应当也可.(4)我们常用的是0,1上的均匀随机数.可以利用计算器来产生 01 之间的均匀随机数(实数),方法如下:试验的结果是区间0,1内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的 01 之间的均匀随机数进行随机模拟.(5)a.选定 A1 格,键入“=RAND() ”,按 Enter 键,则在此格中的数是随机产生的0,1之间的均匀随机数.b.选定 A1 格,按 Ctrl+C 快捷键,选定 A2A50,B1B50,按 Ctrl+V 快捷键,则在 A2A50, B1B50 的数均为0,1之间的均匀随机数.(6)a,b上均匀随机数的
6、产生:利用计算器或计算机产生0,1上的均匀随机数 X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a 就可以得到a,b上的均匀随机数,试验结果是a,b内任何一实数,并且是等可能的.这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.三、例题讲解:例 1 假设你家订了一份报纸,送报人可能在早上 6:307:30 之间把报纸送到你家,你父亲离开家去工作的时间在早上 7:008:00 之间,问你父亲在离开家前能得到报纸(称为事件 A)的概率是多少?活动:用计算机产生随机数模拟试验,我们可以利用计算机产生 01 之间的均匀随机数,利用计算机产生 B 是 01 的
7、均匀随机数,则送报人送报到家的时间为 B+6.5,利用计算机产生A 是 01 的均匀随机数,则父亲离家的时间为 A+7,如果 A+7B+6.5,即 AB-0.5 时,事件E=父亲离家前能得到报纸发生.也可用几何概率的计算公式计算.解法一:1.选定 A1 格,键入“=RAND() ”,按 Enter 键,则在此格中的数是随机产生的0,1之间的均匀随机数.2.选定 A1格,按 Ctrl+C 快捷键,选定 A2A50,B1B50,按 Ctrl+V 快捷键,则在 A2A50,B1B50 的数均为0,1之间的均匀随机数.用 A 列的数加 7 表示父亲离开家的时间,B 列的数加 6.5 表示报纸到达的时间
8、.这样我们相当于做了 50 次随机试验.3.如果 A+7B+6.5,即 A-B-0.5,则表示父亲在离开家前能得到报纸.4.选定 D1 格,键入“=A1-B1” ;再选定 D1,按 Ctrl+C,选定 D2D50,按 Ctrl+V.5.选定 E1 格,键入频数函数“=FREQUENCY(D1:D50,-0.5) ”,按 Enter 键,此数是统计 D 列中,比-0.5 小的数的个数,即父亲在离开家前不能得到报纸的频数.6.选定 F1 格,键入“=1-E1/50”,按 Enter 键,此数是表示统计 50 次试验中,父亲在离开家前能得到报纸的频率.解法二:(见教材 138 页)例 2 在如下图的
9、正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.解法 1:(见教材 139 页)解法 2:(1)用计算机产生两组0,1内均匀随机数 a1=RAND(),b 1=RAND().(2)经过平移和伸缩变换,a=(a 1-0.5)*2,b=(b1-0.5)*2.(3)数出落在圆 x2+y2=1 内的点(a,b)的个数 N1,计算 = (N 代表落在正方形中的14点(a,b)的个数).点评:可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图形的面积.例 3 利用随机模拟方法计算下图中阴影部分(y=1 和 y=x2所围成的部分)的面积.解:(略)四、课堂练习:教材 140 页练习:1、2五、课堂小结:均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.六、课后作业:1、课本习题 3.3B 组题.2、复习本章板书设计教学反思:3.3.2 均匀随机数的产生1、利用计算器来产生 01 之间的均匀随机数2、例题讲解