1、1班级 学号 姓名 课后针对练习2 动能 势能 动能定理(时间 60 分钟,赋分 100 分)一、选择题(每小题 5 分,共 40 分)1.(2001 年上海高考试题)跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的是A.空气阻力做正功B.重力势能增加C.动能增加D.空气阻力做负功2.一节车厢以速度 v=2 m/s 从传送带前通过,传送带以 m/t =2 t/s 的速度将矿砂竖直散落到车厢内,为了保持车厢匀速运动,设车厢所受阻力不变,对车厢的牵引力应增加A.1103 NB.2103 NC.4103 ND.条件不足,无法判断3.在平直公路上,汽车由静止开始做匀加速运动,当速
2、度达到 vm 后立即关闭发动机直到停止,vt 图象如图 621 所示.设汽车的牵引力为 F,摩擦力为 Ff,全过程中牵引力做功W1,克服摩擦力做功 W2,则图 621A.FF f=13B.FF f=41C.W1W 2=11D.W1W 2=134.质量为 m=2 kg 的物体,在水平面上以 v1=6 m/s 的速度匀速向西运动,若有一个2F=8N、方向向北的恒力作用于物体,在 t=2 s 内物体的动能增加了A.28 J B.64 JC.32 J D.36 J5.质量为 m 的小球被系在轻绳一端,在竖直平面内做半径为 R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点
3、,此时绳子的张力为 7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为A. mgR B. mgR4131C. mgR D.mgR26.如图 622 所示,质量为 m 的物体,由高 h 处无初速滑下,至平面上 A 点静止,不考虑 B 点处能量转化,若施加平行于路径的外力使物体由 A 点沿原路径返回 C 点,则外力至少做功为图 622A.mgh B.2mghC.3mgh D.条件不足,无法计算7.如图 623 所示,小球在竖直向下的力 F 作用下,将竖直轻弹簧压缩,若将力 F 撤去,小球将向上弹起并离开弹簧,直到速度为零时为止,则小球在上升过程中小球
4、的动能先增大后减小小球在离开弹簧时动能最大小球动能最大时弹性势能为零小球动能减为零时,重力势能最大以上说法中正确的是A. B.C. D.8.如图 624 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0沿水平射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前进距离 L,子弹进入木块的深度为 s.若木块对子弹的阻力 f 视为恒定,则下列关系式中图 6233正确的是图 524A.FfL= Mv2 B.Ff s= mv21 1C.Ff s= mv02 (Mm)v 2 D.Ff(Ls)= mv02 mv21二、填空题(每小题 6 分,共 2
5、4 分)9.如图 625 所示,在倾角为 30的斜面上,沿水平方向抛出一小球,抛出时小球动能为 6 J,则小球落回斜面时的动能为_J.图 62510.功率为 P,质量为 M 的汽车,下坡时关闭油门,则速度不变.若不关闭油门,且保持功率不变,则在 t s 内速度增大为原来的 2 倍,则汽车的初速度为_.11.质量为 1 kg 的物体在水平面上滑行,且动能随位移变化的情况如图 626 所示,取g=10 m/s2,则物体滑行持续的时间是_.图 62612.如图 627 所示,在水平地面上有一辆质量为 2 kg 的玩具汽车沿 Ox 轴运动,已知其发动机的输出功率恒定,它通过 A 点时速度为 2 m/s
6、,再经过 2 s,它通过 B 点,速度达 6 m/s.A 与 B 两点相距 10 m,它在途中受到的阻力保持为 1 N,则玩具汽车通过 B 点时的加速度为_ m/s 2.4图 627三、计算题(共 36 分)13.(12 分)一个物体从斜面上高 h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为 s(图 628) ,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数 .图 62814.(12 分)电动机通过一绳子吊起质量为 8 kg 的物体,绳的拉力不能超过 120 N,电动机的功率不能超过 1200 W,要将此物体由
7、静止起用最快的方式吊高 90 m(已知此物体在被吊高接近 90 m 时已开始以最大速度匀速上升) ,所需时间为多少?15.(12 分) (2001 年全国高考试题)一个圆柱形的竖直的井里存有一定量的水,井的侧面和底部是密闭的.在井中固定地插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底,在圆管内有一个不漏气的活塞,它可沿圆管上下滑动.开始时,管内外水面相齐,且活塞恰好接触水面,如图 628 所示. 现用卷扬机通过绳子对活塞施加一个向上的力 F,使活塞缓慢向上移动.已知管筒半径 r=0.100 m,井的半径 R=2r,水的密度 =1.00103 kg/m3,大气压 p0=1.00105
8、Pa.求活塞上升 H=9.00 m 的过程中拉力 F 所做的功.(井和管在水面以上及5水面以下的部分都足够长.不计活塞质量,不计摩擦,重力加速度 g=10 m/s2)图 628参考答案一、1.CD 2.C 3.BC 4.B 5.C 6.B 7.B8.ACD 对子弹:由- Ff(L+s)= mv2- mv02 知 D 正确.对木块:由 fL= mv2,知 A 正11确.而由以上两式相加并整理得 fs= mv02- (M +m)v 2,知 C 正确.二 、 9.14 设 小 球 被 抛 出 时 速 度 为 v0, 落 至 斜 面 上 时 竖 直 分 速 度 为 vy, 则 vy=gt,且 tan3
9、0=gt2/v0t 即 gt/2v0=tan30 vy=2v0tan30,故 末 动 能 Ek = m( v02+vy2) = mv02 =14 J.1710. MP11.5 s12.1.25 由动能定理有:Pt-fs = mvB2- mvA2 16aB= mfvP)/(由并代入数据得:a B=1.25 m/s2.三、13.物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功) ,设斜面倾角为 ,斜坡长 L,则重力和摩擦力的功分别为: G=mgLsin f1 =- mgLcos在平面上滑行时仅有摩擦力做功,设平面上滑行的距离为 s2,则 f2=- mgs2整个运动过程中所有外力的功为: =
10、G+ f1+ f2即 =mgLsin - mgLcos - mgs2根据动能定理 =Ek2-Ek1得 mgLsin - mgcos L- mgs2=0得:h- s1- s2=0式中 s1 为斜面底端与物体初位置间水平距离,故 = .sh2114.此题可以用机车起动类问题为思路,即将物体吊高分为两个过程处理:第一个过程是以绳所能承受的最大拉力拉物体,使物体匀加速上升,第一个过程结束时,电动机刚达最大功率.第二个过程是电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀速上升.在匀加速运动过程中加速度为a= m/s2=5 m/s28102mgF末速度 vt= m/s=10 m/s
11、10P上升时间 t1= s=2 s5a上升高度 h= m=10 m20vt在功率恒定的过程中,最后匀速运动的速度为7vm= m/s=15 m/1082gPF外力对物体做的总功 W=Pmt2-mgh2,动能变化量E k= mvm2- mvt2由动能定理得Pmt2-mgh2= mvm2- mvt21代入数据后解得t2=5.75 s,t=t1+t2=7.75 s所需时间至少要 7.75 s.15.从开始提升到活塞升至内外水面高度差为 h0= = gp10 m 的过程中,活塞始终与管内液体接触(再提升活塞时,活塞和水面之间将出现真空,另行讨论).设活塞上升距离为h1,管外液面下降距离为 h2(如图所示
12、) ,则h0=h1+h2因液体体积不变,有h2=h1( h13)42rR得 h1= h0= 10 m=7.5 m3题给 H=9 mh 1,由此可知确实有活塞下面是真空的一段过程.活塞移动距离从零到 h1 的过程中,对于水和活塞这个整体,其机械能的增量应等于除重力外其他力所做的功.因为始终无动能,所以机械能的增量也就等于重力势能增量,即E= ( r2h1)g 0其他力有管内、外的大气压力和拉力 F.因为液体不可压缩,所以管内、外大气压力做的总功 p0 (R 2-r2)h 2-p0 r2h1=0, 故外力做功就只是拉力 F 做的功,由功能关系知W1=E即 W1= ( r2)g h02= r2 =1.18104 J83gp08活塞移动距离从 h1 到 H 的过程中,液面不变, F 是恒力,F= r2p0.做功 W2=F(H-h 1)= r2p0( H-h1)=4.7110 3 J所求拉力 F 做的总功为W1+W2=1.65104 J