1、第二章:探究匀变速运动的规律近年高考考查的重点是匀变速直线运动的规律及 v-t 图像。 本章知识较多与牛顿运动定律、电场中带电粒子的运动等知识结合起来进行考察。近年试题的内容与现实生活和生产实际的结合逐步密切。内容要点 课标解读1 认识自由落体,知道影响自由下落的因素,理解自由落体运动是在理想条件下的运动2 能用打点计时器或其它实验得到相关的运动轨迹,并能自主分分析纸带上记录的位移与时间等运动信息探究自由落体运动3 初步了解探索自然规律的科学方法培养观察概括能力4 理解什么是自由落体5 理解自由落体的方向,知道在地球不同地方重力加速度不同自由落体运动规律6 掌握自由落体的规律7 理解匀变速直线
2、运动的速度位移公式8 会应用公式进行简单的分析和计算从自由落体到匀变速直线运动9 了解伽利略的科学实验思想10 掌握匀变速直线运动的速度位移公式匀变速直线运动和汽车行驶安全11 能理解公式的推导方法,并应用它进行相关计算专题一:自由落体运动 知识梳理1定义:物体从静止开始下落,并只受重力作用的运动。2规律:初速为 0 的匀加速运动,位移公式: ,速度公式:v=gt21gth3两个重要比值:相等时间内的位移比 1:3:5-,相等位移上的时间比 (:1).2(:)1 例题评析【例 1】 建筑工人安装塔手架进行高空作业,有一名建筑工人由于不慎将抓在手中的一根长 5m 的铁杆在竖直状态下脱落了,使其做
3、自由落体运动,铁杆在下落过程中经过某一楼层面的时间为 0.2s,试求铁杆下落时其下端到该楼层的高度?(g10m/s 2,不计楼层面的厚度)【分析与解答】铁杆下落做自由落体运动,其运动经过下面某一楼面时间 t=0.2s,这个 t 也就是杆的上端到达该楼层下落时间 tA 与杆的下端到达该楼层下落时间 tB 之差,设所求高度为 h,则由自由落体公式可得到: 21Bgth5AtAt B t解得 h28.8m【例 2】 在现实生活中,雨滴大约在 1.5km 左右的高空中形成并开始下落。计算一下,若该雨滴做自由落体运动,到达地面时的速度是多少?你遇到过这样快速的雨滴吗?据资料显示,落到地面的雨滴速度一般不
4、超过 8m/s,为什么它们之间有这么大的差别呢?【分析与解答】根据: 21gtsgtvt可推出 smsvt /10732./105.3可见速度太大,不可能出现这种现象。点评实际上雨滴在下落过程所受空气阻力和其速度是有关的,速度越大所受阻力也越大,落到地面之前已做匀速运动., 能力训练 11.甲物体的重力是乙物体的 3 倍,它们在同一高度处同时自由下落,则下列说法中正确的是 ( )A.甲比乙先着地B.甲比乙的加速度大C.甲、乙同时着地D.无法确定谁先着地2.关于自由落体运动,下列说法正确的是 ( )A.某段时间的平均速度等于初速度与末速度和的一半B.某段位移的平均速度等于初速度与末速度和的一半C
5、.在任何相等时间内速度变化相同D.在任何相等时间内位移变化相同3.自由落体运动在任何两个相邻的 1s 内,位移的增量为 ( )A.1m B.5mC.10m D.不能确定4.甲物体的重量比乙物体大 5 倍,甲从 H 高处自由落下,乙从 2H 高处与甲物体同时自由落下,在它们落地之前,下列说法中正确的是 ( )A.两物体下落过程中,在同一时刻甲的速度比乙的速度大B.下落 1s 末,它们的速度相同C.各自下落 1m 时,它们的速度相同D.下落过程中甲的加速度比乙的加速度大5.从某高处释放一粒小石子,经过 1s 从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将 ( )A.保持不变B.
6、不断增大C.不断减小D.有时增大,有时减小6.长为 5m 的竖直杆下端距离一竖直隧道口为 5m,若这个隧道长也为 5m,让这根杆自由下落,它通过隧道的时间为 ( )7.图 1 所示的各 vt 图象能正确反映自由落体运动过程的是( )8.甲、乙两物体分别从 10m 和 20m 高处同时自由落下,不计空气阻力,下面描述正确的是 ( )A.落地时甲的速度是乙的 1/2B.落地的时间甲是乙的 2 倍C.下落 1s 时甲的速度与乙的速度相同D.甲、乙两物体在最后 1s 内下落的高度相等9.从高 h 处自由下落的物体,落到地面所用的时间是 t=_,落地时的速度v=_,物体落下 h/3 时和落下全程时的速度
7、之比是_,各自所经历的时间之比是_.10.自由下落的物体在头 ts 内,头 2ts 内和头 3ts 内下落的高度之比是 _;在第 1个 ts 内、第 2 个 ts 内、第 3 个 ts 内下落的高度之比又是_.11.物体从高 270m 处自由下落,把它运动的总时间分成相等的 3 段,则这 3 段时间内下落的高度分别为_m、 _m 和_m;若把下落的总高度分成相等的三段,则物体依次下落这 3 段高度所用的时间之比为_.12.一物体从 45m 高处自由下落,在最后 1s 通过的高度是_s,最后 1s 的初速度是_m/s,最后 1s 内的平均速度是_m/s 。13.我们适当调整水龙头开关,可以看到水
8、龙头中流出的水柱越往下越细,再往下甚至会断裂成水滴,这是为什么?14.一只球从高处自由下落,下落 0.5s 时,一颗子弹从其正上方向下射击,要使球在下落 1.8m 时被击中,则子弹发射的初速度是多大?15.屋檐定时滴出水滴,当第 5 滴正欲滴下时,第 1 滴已刚好到达地面,而第 3 滴与第2 滴正分别位于高 1m 的窗户的上、下沿,如图所示,问:(1)此屋檐离地面多少 m?(2)滴水的时间间隔是多少?16一物体由静止下落 16m,用时 2s,则它再下落 16m 所用的时间是多少? 17在软绳两端各绑一石块,绳长 3m,拿着上端石块使它与桥面相平,放手让石块自由下落,测得两石块的落水声相隔0.1
9、s,桥面距水面的高度为? 18一个物体从 h 高处自由下落,经过最后 196m 所用的时间是 4s,若空气阻力不计,求物体下落的总时间 t 和下落的总高度 h 19在自来水龙头下放一玻璃器皿,调节水龙头,让水一滴滴地流出,并调节到使第一滴水碰到器底的瞬间,第二滴水正好从水龙头口开始下落,且能依次下落并持续下去,若给你的测量器材是直尺和秒表,利用这些器材测定重力加速度,需测定哪些物理量?写出计算重力加速度的表达式。专题二:匀变速直线运动的规律 知识梳理1.常用的匀变速运动的公式有: vt=v0+at s=v0t+at2/2 vt2=v02+2as 1 2 3S=(v0+vt)t/2 4 2/0t
10、tvv 5 aTs(1) 说明:上述各式有 V0,V t,a,s,t 五个量,其中每式均含四个量,即缺少一个量,在应用中可根据已知量和待求量选择合适的公式求解。式中 T 表示连续相等时间的时间间隔。(2) 上述各量中除 t 外其余均矢量,在运用时一般选择取 v0的方向为正方向,若该量与v0的方向相同则取为正值,反之为负。对已知量代入公式时要带上正负号,对未知量一般假设为正,若结果是正值,则表示与 v0方向相同,反之则表示与 V0方向相反。另外,在规定 v0方向为正的前提下,若 a 为正值,表示物体作加速运动,若 a 为负值,则表示物体作减速运动;若 v 为正值,表示物体沿正方向运动,若 v 为
11、负值,表示物体沿反向运动;若 s 为正值,表示物体位于出发点的前方,若 S 为负值,表示物体位于出发点之后。(3) 注意:以上各式仅适用于匀变速直线运动,包括有往返的情况,对匀变速曲线运动和变加速运动均不成立。 例题评析【例 3】从斜面上某一位置,每隔 O.1s 释放一颗小球,在连续释放几颗后,对在斜面上滑动的小球拍下照片,如图所示,测得 SAB=15cm,S BC=20cm,试求:(1)小球的加速度(2)拍摄时 B 球的速度 VB(3)拍摄时 SCD(4)A 球上面滚动的小球还有几颗?【分析与解答】 释放后小球都做匀加速直线运动,每相邻两球的时间问隔均为 o.1s,可以认为 A、B、C、D
12、各点是一个球在不同时刻的位置。【说明】 利用推论结合基本公式求解运动学问题非常方便。【例 4】 跳伞运动员作低空跳伞表演,当飞机离地面 224 m 时,运动员离开飞机在竖直方向做自由落体运动.运动一段时间后,立即打开降落伞,展伞后运动员以 12.5 m/s2 的平均加速 度 匀 减 速 下 降 .为 了 运 动 员 的 安 全 , 要 求 运 动 员 落 地 速 度 最 大 不 得 超 过 5 m/s.取 g=10 m/s2.求 :(1)运动员展伞时,离地面的高度至少为多少?着地时相当于从多高处自由落下?(2)运动员在空中的最短时间为多少?【分析与解答】:运动员跳伞表演的过程可分为两个阶段,即
13、降落伞打开前和打开后.由于降落伞的作用,在满足最小高度且安全着地的条件下,可认为 vm=5 m/s 的着地速度方向是竖直向下的,因 此 求 解 过 程 中 只 考 虑 其竖 直 方 向 的 运 动 情 况 即 可 .在 竖 直 方 向 上 的 运 动 情 况 如 图 所 示 .(1)由公式 vT2v 022as 可得第一阶段:v 22gh 1 第二阶段:v 2v m22ah 2 又 h1h 2H 解式可得展伞时离地面的高度至少为 h299 m.设以 5 m/s 的速度着地相当于从高 处自由下落.则 = m1.25 m.gv2105(2)由公式 s=v0t at2 可得:1第一阶段:h 1 gt
14、12 第二阶段:h 2vt 2 at22 又 t=t1t 2 解式可得运动员在空中的最短时间为t=8.6 s.说 明 : 简 要 地 画 出 运 动 过 程 示 意 图 , 并 且 在 图 上 标 出 相 对 应 的 过 程 量 和 状 态 量 , 不 仅 能 使 较复 杂 的 物 理 过 程 直 观 化 , 长 期 坚 持 下 去 , 更 能 较 快 地 提 高 分 析 和 解 决 较 复 杂 物 理 问 题 的 能 力 .【例 5】 以速度为 10 m/s 匀速运动的汽车在第 2 s 末关闭发动机,以后为匀减速运动,第 3 s 内平均速度是 9 m/s,则汽车加速度是_ m/s2,汽车在
15、10 s 内的位移是_ m.【分析与解答】:第 3 s 初的速度 v010 m/s,第 3.5 s 末的瞬时速度 vt=9 m/s推论(2) 所以汽车的加速度:a= = m/s22 m/s 2tv05.19“”表示 a 的方向与运动方向相反.汽车关闭发动机后速度减到零所经时间:t2 = s=5 s8 sav021则关闭发动机后汽车 8 s 内的位移为:s2 = m25 m0)( 前 2 s 汽车匀速运动:s1v 0t110 2 m20 m汽车 10 s 内总位移:s=s1s 220 m25 m45 m.说明:(1)求解刹车问题时,一定要判断清楚汽车实际运动时间.(2)本题求 s2 时也可用公式
16、 s= at2 计算.也就是说“末速度为零的匀减速运动”可倒1过来看作“初速度为零的匀加速运动”. 能力训练 21一个物体由静止开始做匀加速直线运动,第 1 s 末的速度达到 4 m/s,物体在第 2 s 内的位移是A.6 m B.8 m C.4 m D.1.6 m2光滑斜面的长度为 L,一物体由静止从斜面顶端沿斜面滑下,当该物体滑到底部时的速度为 v,则物体下滑到 L/2 处的速度为A. B.v/2 C. D.v/433物体的初速度为 v0,以加速度 a 做匀加速直线运动,如果要它的速度增加到初速度的 n倍,则物体的位移是A. B.an2)1(0vn20C. D. v)(0 a)1(204做
17、匀加速运动的列车出站时,车头经过站台某点 O 时速度是 1 m/s,车尾经过 O 点时的速度是 7 m/s,则这列列车的中点经过 O 点时的速度为A.5 m/s B.5.5 m/sC.4 m/s D.3.5 m/s5甲乙两个质点同时同地向同一方向做直线运动,它们的 vt 图象如图所示,则A.乙比甲运动的快B.2 s 乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点 40 m 远6某质点做匀变速直线运动,在连续两个 2 s 内的平均速度分别是 4 m/s 和 10 m/s,该质点的加速度为A.3 m/s2 B.4 m/s2C.5 m/s2 D.6 m/s27 两木块自左向右运动,现
18、用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的。由图可知A在时刻 t2以及时刻 t5两木块速度相同B在时刻 t3两木块速度相同C在时刻 t3和时刻 t4之间某瞬时两木块速度相同D在时刻 t4和时刻 t5之间某瞬时两木块速度相同8为了测定某辆轿车在平直路上起动时的加速度(轿车起动时的运动可近似看作匀加速运动),某人拍摄了一张底片上多次曝光的照片,如图所示,如果拍摄时每隔 2s 曝光一次,轿车身长为 4.5m,那么这辆车的加速度约为 A1ms 2 B2ms 2 C3mS 2。 D4ms 29某物体从空中由静止下落,由于空气阻力的存在且变化,物
19、体运动的加速度越来越小,已知物体落地瞬间速度为 vt,则物体在空中运动过程中的平均速度 为 10飞机起飞的速度相对静止空气是 60 m/s,航空母舰以 20 m/s 的速度向东航行,停在航空母舰上的飞机也向东起飞,飞机的加速度是 4 m/s2,则起飞所需时间是_s,起飞跑道至少长_m 11汽车以 15 m/s 的速度行驶,从某时刻起开始刹车,刹车后做匀减速直线运动,加速度大小为 6 m/s2,则汽车刹车后 3 s 内的位移为_m. 12一个做匀变速直线运动的质点,其位移随时间的变化规律 s=2t+3t2(m),则该质点的初速度为_m/s ,加速度为 _m/s2,3 s 末的瞬时速度为_m/s,
20、第 3 s 内的位移为_m. 13一列火车由车站开出做匀加速直线运动时,值班员站在第一节车厢前端的旁边,第一节车厢经过他历时 4 s,整个列车经过他历时 20 s,设各节车厢等长,车厢连接处的长度不计,求:(1)这列火车共有多少节车厢?(2)最后九节车厢经过他身旁历时多少?14.一个冰球在冰面上滑行,依次通过长度都是 L 的两段距离,并继续向前运动它通过第一段距离的时间为 t,通过第二段距离的时间为 2t,如果冰球在运动过程中所受阻力不变,求冰球在第一段距离末了时的速度多大? 15. 汽车由甲地从静止出发,沿平直公路驶向乙地。汽车先以加速度 a1,做匀加速运动,然后做匀速运动,最后以加速度 a
21、2做匀减速运动,到乙地恰好停下。已知甲、乙两地相距为 s,那么要使汽车从甲地到乙地所用时间最短,汽车应做怎样的运动?请结合速度图像做定性分析;并定量算出最短时间及相应的最大速度。16.某物体作加速度为 a=2 米/秒。的匀减速直线运动,停止运动前 2 秒内的位移是整个位移的 1/4求物体的初速度。 专题三汽车做匀变速运动,追赶及相遇问题 知识梳理在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置.因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出.(1)追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件.如匀
22、减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离.若二者相遇时(追上了) ,追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值.再如初速度为零的匀加速运动的物体追赶同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上.(2)相遇同向运动的两物体追及即相遇,分析同(1).相向运动的物体,当各自发生的位移的绝对值的和等于开始时两物体间的距离时即相遇.【例 6】一列客车以 v1的速
23、度前进,司机发现前面同一轨道上有一列货车正以 v2(v2s1,所以乙车能追上甲车。【例 8】 火车以速度 v1 匀速行驶,司机发现前方同轨道上相距 s 处有另一列火车沿同方向以速度 v2(对地、且 v1v 2)做匀速运动,司机立即以加速度 a 紧急刹车.要使两车不相撞,a 应满足什么条件?【分析与解答】:此题有多种解法.解法一:两车运动情况如图所示,后车刹车后虽做匀减速运动,但在其速度减小至和 v2 相等之前,两车的距离仍将逐渐减小;当后车速度减小至小于前车速度,两车距离将逐渐增大.可见,当两车速度相等时,两车距离最近.若后车减速的加速度过小,则会出现后车速度减为和前车速度相等之前即追上前车,
24、发生撞车事故;若后车减速的加速度过大,则会出现后车速度减为和前车速度相等时仍未追上前车,根本不可能发生撞车事故;若后车加速度大小为某值时,恰能使两车在速度相等时后车追上前车,这正是两车恰不相撞的临界状态,此时对应的加速度即为两车不相撞的最小加速度.综上分析可知,两车恰不相撞时应满足下列两方程:v1t a0t2v 2tsv1a 0tv 2解之可得:a 0 .sv21)( 所以当 a 时,两车即不会相撞.2)(解法二:要使两车不相撞,其位移关系应为v1t at2s v 2t即 at2(v 2 v1)ts0对任一时间 t,不等式都成立的条件为 (v 2v 1) 22as0由此得 a .s)( 解法三
25、:以前车为参考系,刹车后后车相对前车做初速度 v0v 1v 2、加速度为 a 的匀减速直线运动.当后车相对前车的速度减为零时,若相对位移 s,则不会相撞.故由 = ssav20v21)( 得 a .21)(【例 9】一辆摩托车行驶的最大速度为 30m/s。现让该摩托车从静止出发,要在 4 分钟内追上它前方相距 1 千米、正以 25m/s 的速度在平直公路上行驶的汽车,则该摩托车行驶时,至少应具有多大的加速度?【分析与解答】:假设摩托车一直匀加速追赶汽车。则:V0t+S0 (1)2ata = (m/s 2) (2)4.024052 tS摩托车追上汽车时的速度:V = at = 0.24240 =
26、 58 (m/s) (3)因为摩托车的最大速度为 30m/s,所以摩托车不能一直匀加速追赶汽车。应先匀加速到最大速度再匀速追赶。(4)tVStatm0121Vm at 1 (5)由(4) (5)得:t 1=40/3(秒)a= 2.25 (m/s)4093/总结:(1)要养成根据题意画出物体运动示意图的习惯.特别对较复杂的运动,画出草图可使运动过程直观,物理图景清晰,便于分析研究.(2)要注意分析研究对象的运动过程,搞清整个运动过程按运动性质的转换可分为哪几个运动阶段,各个阶段遵循什么规律,各个阶段间存在什么联系.(3)由于本章公式较多,且各公式间有相互联系,因此,本章的题目常可一题多解.解题时
27、要思路开阔,联想比较,筛选最简捷的解题方案.解题时除采用常规的公式解析法外,图象法、比例法、极值法、逆向转换法(如将一匀减速直线运动视为反向的匀加速直线运动)等也是本章解题中常用的方法. 能力训练 31甲车以加速度 3ms。由静止开始作匀加速直线运动,乙车落后 2s 在同一地点由静止出发,以加速度 4ms。作加速直线运动,两车运动方向一致,在乙车追上甲车之前,两车的距离的最大值是:A18m; B235m; C24m; D28m2两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车已知前车在特车过程中所行的距离为
28、s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为: As; B2s; C3s; D4s3如图所示,在光滑的水平面上 A、B 两物体相距 L=7m 时,A 正以 VA=4m/s 的速度向右做匀速运动,而 B 物体此时以速度 VB=10m/s 在水平恒力作用下向右做匀减速直线运动,加速度大小 a=2m/s2,从图示的位置开始计时,则 A 追上 B 需要的时间是 A一定是 6s B一定是 7sC一定是 8s D7s 或 8s 都有可能4.一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以 3m/s2的加速度开始行驶,恰在这时一辆自行车以 6m/s。的速度匀速驶来,从后边超过汽车试
29、问:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多大? 1什么时候汽车追上自行车?此时汽车的速度是多大? 25甲、乙两车同时从车站出发,甲车以加速度 a1做匀加速直线运动,一段时间后又以加速度 a2做匀减速直线运动,到达终点恰好停止;而乙车则以恒定的加速度 a 做匀加速直线运动,并恰好与甲同时到达终点站,如图,试证明: 21 模拟测试1一个运动员在百米赛跑中,测得他在 50m 处的速度是 6m/s,16s 末到终点时的速度是7.5m/s,则全程内的平均速度的大小是( )A6m/s B6.25m/s C6.75m/s D7.5m/s2汽车在平直的公路上做加速度为 0.5
30、m/s2 的匀加速运动,那么在任意 1s 内( )A汽车的末速度一定等于初速度的 0.5 倍B汽车的初速度一定比前 1s 内的末速度大 0.5m/sC汽车的末速度比前 1s 内的初速度大 0.5m/sD汽车的末速度一定比初速度大 0.5m/s3关于物体的运动,下面说法中不可能的是( )A加速度在减小,速度在增加B加速度的方向始终变而速度不变C加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D加速度的方向不变而速度方向变化4甲、乙两小分队进行代号为“猎狐”的军事演习,指挥部通过现代通信设备,在荧屏上观察到小分队的行军路线如图所示,小分队同时由同地 O 点出发,最后同时捕“狐”
31、于 A点,下列说法正确的有( )A小分队行军路程 S 甲 S 乙B小分队平均速度 v 甲 =v 乙Cyx 图线是速度(v) 时间(t )图象Dyx 图象是位移(S )时间(t )图象5质点从静止开始作匀加速直线运动,从开始运动起,通过连续三段路程所经历的时间分别为 1s、2s 、3s,这三段路程之比是( )A1:2:3 B1:3:5 C1 2:22:32 D1 3:23:336利用打点计时器测定物体做匀变速直线运动的加速度时,在纸带上打出一系列的点,如图所示.设各相邻记数点之间的距离分别为 s1、s 2、s 3、s 4,相邻两记数点的时间间隔为 T,则下列关系式中正确的是A.s s aT B.
32、s4s 3aT C.打点 2 时物体的速度为 v2=(s2+s3)/2TDs 1=aT2/27作匀变速直线运动的物体先后经过 A、B 两点,在它们中间位置的速度为 v1,在中间时刻的速度为 v2,则( )A物体作加速运动时,v 1v2 B物体作加速运动时,v 2v1C物体作减速运动时,v 1v2 D物体作减速运动时,v 2v18A、B 两质点的 vt 图像如图所示,设它们在同一条直线上运动,在 t=3s 时它们在中途相遇,由图可知( )AA 比 B 先启程BA 比 B 后启程C两质点启程前 A 在 B 前面 4mD两质点启程前 A 在 B 后面 2m11小球的自由落体运动通过频闪照相的照片损坏
33、,开始落下的部分被撕去。在损坏的照片上选相邻的三点 a、b、c (g=10m/s 2)ab 间距 10mm,bc 间距 14mm,频闪照相每幅相片的时间间隔 s(忽略爆光时间)b 点的速度为 m/s,a 点以上还应有几幅相片? 幅。12相距 12km 的公路两端,甲、乙两人同时出发相向而行,甲的速度为 5km/h,乙的速度为 3m/h,有一小犬以 6km/h 同时由甲向乙跑,遇到乙后回头向甲跑,如此往复,直到甲、乙相遇,则此过程中犬的路程为 km。13某质点从静止开始以加速度 a1 做匀加速直线运动,经 t 秒钟加速度大小立即变为 a2,方向相反,再经 t 秒钟恰好回到原出发点,则 a1、 、
34、a 2 的比值为 。14一列火车做匀变速直线运动驶来,一人在火车旁观察火车的运动,发现相邻的两个10s 内,列车从他跟前驶过 8 节车厢和 6 节车厢,每节车厢长 8m,求:(1)火车的加速度(2)人开始观察时火车的速度大小。15如图所示,在某市区,一辆小汽车在平直公路上向东匀速行驶,一位游客正由南向北从斑马线上横穿马路,司机发现前方有危险(游客在 D处) ,经 0.7s 作出反应,紧急刹车,仍将正步行至 B 处的游客撞伤,汽车最终停在 C 处,为了解现场,警方派一警车以法定最高速度 vm=14m/s,行驶在同一路段,在肇事汽车的起始制动点 A 紧急刹车,经 14m 后停下来,现测得AB=17
35、.5m、BC=14m 、BD=2.6m,问:(1)肇事汽车的初速度是多大?(2)游客横穿马路的速度是多大?16物体原来静止在光滑的水平面上,现在奇数秒内由于受恒力作用作 2m/s2 的匀加速直线运动,偶数秒内作匀速运动,经多长时间物体的位移达到 40.25m。17如图所示,一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,有一台发出细光束激光器装在上转台 M 上,到轨道的距离 MN 为 d=10m,如图所示,转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为 T=60s,光束转动方向如图中箭头所示,当光束与 MN 的夹角为 45o时,光束正好射到小车上,如果再经过t=2.5s
36、光束又射到小车上,则小车的速度为多少?(结果保留二位数字)18如图所示,AB、CO 为互相垂直的丁字行公路,CB 为一斜直小路,CB 与 CO 成 600角,CO 间距 300 米,一逃犯骑着摩托车以 54Km/h 的速度正沿 AB 公路逃串。当逃犯途径路口 O 处时,守侯在 C 处的公安干警立即以 1.2m/S2 的加速度启动警车,警车所能达到的最大速度为 120Km/h。公安干警沿 COB 路径追捕逃犯,则经过多长时间在何处能将逃犯截获?公安干警抄 CB 近路到达 B 处时,逃犯又以原速率掉头向相反方向逃串,公安干警则继续沿 BA 方向追捕,则经过多长时间在何处能将逃犯截获?(不考虑摩托车和警车转向的时间)