1、八年级 下册,19.3 课题学习 选择方案(1),学习目标:1会用一次函数知识解决方案选择问题,体会函数模型思想;2能从不同的角度思考问题,优化解决问题的方法;3能进行解决问题过程的反思,总结解决问题的方法 学习重点:建立函数模型解决方案选择问题,下表给出A,B,C 三种上宽带网的收费方式:选取哪种方式能节省上网费?该问题要我们做什么?选择方案的依据是什么?,根据省钱原则选择方案,提出问题,分析问题,要比较三种收费方式的费用,需要做什么?分别计算每种方案的费用怎样计算费用?,分析问题,A,B,C 三种方案中,所需要的费用是固定的还 是变化的? 方案C费用固定;方案A,B的费用在超过一定时间后,
2、随上网时间 变化,是上网时间的函数,分析问题,方案A费用:,方案B费用:,方案C费用:,y3=120,请分别写出三种方案的上网费用y 元与上网时间t h 之间的函数解析式,能把这个问题描述为函数问题吗?设上网时间为 t,方案A,B,C的上网费用分别为 y1 元,y2 元, y3 元,且,分析问题,请比较y1,y2,y3的大小,这个问题看起来还是有点复杂,难点在于每一个函 数的解析都是分类表示的,需要分类讨论,而怎样分类 是难点怎么办?先画出图象看看,y3=120,分析问题,分类:y1y2y3时,y1最小;y1=y2y3时,y1(或y2)最小;y2y1y3时,y2最小; y1y3,且y2y3时,
3、y3最小,解决问题,解:设上网时间为t h,方案A,B,C的上网费用分 别为y1 元,y2 元, y3 元,则,解决问题,当上网时间不超过31小时40分,选择方案A最省钱;当上网时间为31小时40分至73小时20分,选择方案 B最省钱;当上网时间超过73小时20分,选择方案C最省钱,解决问题,怎样租车,某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表 :,(1)共需租多少辆汽车? (2)给出最节省费用的租车方案。,分析,(1)要保证240名师生有车坐 (2)要使每辆汽车上至少要有1名教师,
4、根据(1)可知,汽车总数不能小于;根据(2)可知,汽车总数不能大于。综合起来可知汽车总数为 。,设租用x辆甲种客车,则租车费用y(单位:元)是 x 的函数,即,问题,6,6,6,y=400x+280(6-x),化简为: y=120x+1680,讨论,根据问题中的条件,自变量x 的取值应有几种能?,为使240名师生有车坐,x不能 小于;为使租车费用不超过2300元,X不能超过。综合起来可知x 的取值为 。,4,5,4、5,45x+30(6-x) 24015x60x4,400x+280(6-x) 2300120x620x31/6,4x31/6,4辆甲种客车,2辆乙种客车;,5辆甲种客车,1辆乙种客
5、车;,y1=12041680=2160,y2=12051680=2280,应选择方案一,它比方案二节约120元。,方案一,我校校长暑期带领学校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可以享受半价优惠”乙旅行社说:“包括校长全部按全票价的6折优惠”已知全票价为240元(1)当学生人数是多少时,两家旅行社的收费一样?(2)若学生人数为9人时,哪家收费低?(3)若学生人数为11人时,哪家收费低?,怎样购票,解后反思,这个实际问题的解决过程中是怎样思考的?,课后作业,小张准备安装空调,请你调查市场上不同节能级别 的空调的价格、耗电量,了解当地的电费价格,运用数 学知识进行分析,给小张提一个购买建议把你的调查 分析及建议写成书面报告形式,