1、第八章 离散模型,8.1 层次分析模型8.2 循环比赛的名次8.3 社会经济系统的冲量过程8.4 效益的合理分配,y,离散模型,离散模型:差分方程(第7章)、整数规划(第4章)、图论、对策论、网络流、 ,分析社会经济系统的有力工具,只用到代数、集合及图论(少许)的知识,8.1 层次分析模型,背景,日常工作、生活中的决策问题,涉及经济、社会等方面的因素,作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化,Saaty于1970年代提出层次分析法 AHP (Analytic Hierarchy Process),AHP一种定性与定量相结合的、系统化、层次化的分析方法,目标层,O(选择旅游
2、地),准则层,方案层,一. 层次分析法的基本步骤,例. 选择旅游地,如何在3个目的地中按照景色、费用、居住条件等因素选择.,“选择旅游地”思维过程的归纳,将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素, 各层元素间的关系用相连的直线表示。,通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。,将上述两组权重进行综合,确定各方案对目标的权重。,层次分析法将定性分析与定量分析结合起来完成以上步骤,给出决策问题的定量结果。,层次分析法的基本步骤,成对比较阵和权向量,元素之间两两对比,对比采用相对尺度,设要比较各准则C1,C2, , Cn对目标O的重要性,A成对比较阵,
3、A是正互反阵,要由A确定C1, , Cn对O的权向量,选择旅游地,景色 费用 居住 饮食 旅途,成对比较的不一致情况,允许不一致,但要确定不一致的允许范围,考察完全一致的情况,成对比较阵和权向量,成对比较完全一致的情况,A的秩为1,A的唯一非零特征根为n,A的任一列向量是对应于n 的特征向量,A的归一化特征向量可作为权向量,对于不一致(但在允许范围内)的成对比较阵A,建议用对应于最大特征根的特征向量作为权向量w ,即,一致阵性质,成对比较阵和权向量,2 4 6 8,比较尺度aij,Saaty等人提出19尺度aij 取值1,2, , 9及其互反数1,1/2, , 1/9,心理学家认为成对比较的因
4、素不宜超过9个,用13,15,117,1p9p (p=2,3,4,5), d+0.1d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现, 19尺度较优。,便于定性到定量的转化:,成对比较阵和权向量,一致性检验,对A确定不一致的允许范围,已知:n 阶一致阵的唯一非零特征根为n,可证:n 阶正互反阵最大特征根 n, 且 =n时为一致阵,定义一致性指标:,CI 越大,不一致越严重,为衡量CI 的大小,引入随机一致性指标 RI随机模拟得到aij , 形成A,计算CI 即得RI。,定义一致性比率 CR = CI/RI,当CR0.1时,通过一致性检验,S
5、aaty的结果如下,“选择旅游地”中准则层对目标的权向量及一致性检验,准则层对目标的成对比较阵,最大特征根=5.073,权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T,一致性指标,随机一致性指标 RI=1.12 (查表),一致性比率CR=0.018/1.12=0.0163)个顶点的双向连通竞赛图,存在正整数r,使邻接矩阵A 满足Ar 0,A称素阵,素阵A的最大特征根为正单根,对应正特征向量s,且,排名为1,2,4,3,1, 2, 3, 4?,6支球队比赛结果,排名次序为1,3, 2,5,4,6,v1能源利用量; v2能源价格;v3能源生产率; v4环境
6、质量;v5工业产值; v6就业机会;v7人口总数。,8.3 社会经济系统的冲量过程,系统的元素图的顶点,元素间的影响带方向的弧,影响的正反面弧旁的+、 号,带符号的有向图,影响直接影响,符号客观规律;方针政策,例 能源利用系统的预测,带符号有向图G1=(V,E)的邻接矩阵A,V顶点集 E弧集,定性模型,带符号的有向图G1,加权有向图G2及其邻接矩阵W,定量模型,某时段vi 增加1单位导致下时段vj 增加wij单位,v7,冲量过程(Pulse Process),研究由某元素vi变化引起的系统的演变过程,vi(t) vi在时段t 的值; pi(t) vi在时段t 的改变量(冲量),冲量过程模型,或
7、,能源利用系统的预测,简单冲量过程初始冲量p(0)中某个分量为1,其余为0的冲量过程,若开始时能源利用量有突然增加,预测系统的演变,设,能源利用系统的 p(t)和v(t),简单冲量过程S的稳定性,任意时段S的各元素的值和冲量是否为有限(稳定),S不稳定时如何改变可以控制的关系使之变为稳定,S冲量稳定对任意 i,t, | pi(t) |有界,S值稳定对任意 i,t, | vi(t) |有界,记W的非零特征根为,S冲量稳定 | | 1,S冲量稳定 | | 1且均为单根,S值稳定 S冲量稳定且不等于1,对于能源利用系统的邻接矩阵A,特征多项式,能源利用系统存在冲量不稳定的简单冲量过程,简单冲量过程S
8、的稳定性,简单冲量过程的稳定性,改进的玫瑰形图S* 带符号的有向图双向连通,且存在一个位于所有回路上的中心顶点。,回路长度 构成回路的边数,回路符号 构成回路的各有向边符号+1或-1之乘积,ak长度为k的回路符号和,r使ak不等于0的最大整数,S*冲量稳定 ,若S*冲量稳定,则S*值稳定 ,简单冲量过程S*的稳定性,a1=0, a2= (-1)v1v2 (-1)v2v1 =1,a3=(+1)v1v3v5v1+(-1)v1v4v7v1+(+1)v1v3v2v1=1, a4=0, a5=1, r=5,S*冲量稳定 ,(-1)v1v2(+1)v1v2(由鼓励利用变为限制利用) a2 =-1,+,S*
9、冲量稳定 | | 1且均为单根,v1利用量, v2价格,v7,若S*冲量稳定,则S*值稳定 ,S*冲量稳定 ,v3能源生产率 v5工业产值,S*值稳定,能源利用系统的值不应稳定?,-,8.4 效益的合理分配,例,甲乙丙三人合作经商,若甲乙合作获利7元,甲丙合作获利5元,乙丙合作获利4元,三人合作获利11元。又知每人单干获利1元。问三人合作时如何分配获利?,记甲乙丙三人分配为,解不唯一,(5,3,3)(4,4,3)(5,4,2),(1) Shapley合作对策, I,v n人合作对策,v特征函数,n人从v(I)得到的分配,满足,v(s) 子集s的获利,公理化方法,s子集 s中的元素数目, Si
10、包含i的所有子集,由s决定的“贡献”的权重, i 对合作s 的“贡献”,Shapley合作对策,三人(I=1,2,3)经商中甲的分配x1的计算,1/3 1/6 1/6 1/3,1 1 2 1 3 I,1 7 5 11,0 1 1 4,1 6 4 7,1/3 1 2/3 7/3,x1=13/3,类似可得 x2=23/6, x3=17/6,1 2 2 3,合作对策的应用 例1 污水处理费用的合理分担,污水处理,排入河流,三城镇可单独建处理厂,或联合建厂(用管道将污水由上游城镇送往下游城镇),Q污水量,L管道长度建厂费用P1=73Q0.712管道费用P2=0.66Q0.51L,污水处理的5 种方案,
11、1)单独建厂,总投资,2)1, 2合作,3)2, 3合作,4)1, 3合作,总投资,总投资,合作不会实现,5)三城合作总投资,D5最小, 应联合建厂,建厂费:d1=73(5+3+5)0.712=453 12管道费:d2=0.66 50.51 20=30 23管道费:d3=0.66 (5+3)0.51 38=73,D5,城3建议:d1 按 5:3:5分担, d2,d3由城1,2担负,城2建议:d3由城1,2按 5:3分担, d2由城1担负,城1计算:城3分担d15/13=174C(1),不同意,D5如何分担?,特征函数v(s)联合(集s)建厂比单独建厂节约的投资,三城从节约投资v(I)中得到的分
12、配,Shapley合作对策,计算城1从节约投资中得到的分配x1,x1 =19.7,城1 C(1)-x1=210.4, 城2 C(2)-x2=127.8, 城3 C(3)-x3=217.8,x2 =32.1, x3=12.2,x2最大,如何解释?,合作对策的应用 例2 派别在团体中的权重,90人的团体由3个派别组成,人数分别为40, 30, 20人。团体表决时需过半数的赞成票方可通过。,虽然3派人数相差很大,若每个派别的成员同时投赞成票或反对票,用Shapley合作对策计算各派别在团体中的权重。,团体 I=1,2,3,依次代表3个派别,优点:公正、合理,有公理化基础。,如n个单位治理污染, 通常
13、知道第i方单独治理的投资yi 和n方共同治理的投资Y, 及第i方不参加时其余n-1方的投资zi (i=1,2, n). 确定共同治理时各方分担的费用。,其它v(s)均不知道, 无法用Shapley合作对策求解,Shapley合作对策小结,若定义特征函数为合作的获利(节约的投资),则有,缺点:需要知道所有合作的获利,即要定义I=1,2,n的所有子集(共2n-1个)的特征函数,实际上常做不到。,求解合作对策的其他方法,例. 甲乙丙三人合作经商,若甲乙合作获利7元,甲丙合作获利5元,乙丙合作获利4元,三人合作获利11元。问三人合作时如何分配获利?,(2)协商解,将剩余获利 平均分配,模型,以n-1方
14、合作的获利为下限,求解, xi 的下限,(3)Nash解,为现状点(谈判时的威慑点),在此基础上“均匀地”分配全体合作的获利B,模型,(4)最小距离解,模型,第i 方的边际效益,若令,(5)满意解,di现状点(最低点)ei理想点(最高点),模型,(6)Raiffi 解,与协商解x=(5,4,2)比较,求解合作对策的6种方法(可分为三类),Shapley合作对策,A类,B类,协商解,Nash解,最小距离解,例:有一资方(甲)和二劳方(乙,丙), 仅当资方与至少一劳方合作时才获利10元,应如何分配该获利?,Raiffi解,C类,B类:计算简单,便于理解,可用于各方实力相差不大的情况;一般来说它偏袒强者。,C类: 考虑了分配的上下限,又吸取了Shapley的思想,在一定程度上保护弱者。,A类:公正合理;需要信息多,计算复杂。,求解合作对策的三类方法小结,