1、二重积分计算中积分限的确定摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法.关键词:二重积分 累次积分 积分限 积分次序引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学过程和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好的帮助学生解决这一难题。1 高等数学中计算二重积分的方法在高等数学课本中,在直角坐标系下计算二重积分的步骤为: 。1(1) 画出积分区域(2) 确定积分区域是否为 X-型或 Y-型区域,如既不是 X-型也不是
2、 Y-型区域,则要将积分区域化成几个 X-型和 Y-型区域,并用不等式组表示每个 X-型和 Y-型区域.(3) 用公式化二重积分为累次积分.(4) 计算累次积分的值.在教学的过程中我发现学生对于此种方法掌握的很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得.2 教学过程中总结的方法本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体的例题加以说明.在将二重积分转化为累次积分的时候对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量我们要根据积分区域确
3、定其上下限(所谓确定是指根据积分区域图将其上下限定为常数).确定了这个变量的上下限以后,我们在其上下限内画一条和上下限平行的直线,该直线沿着坐标轴的正方向画过来,这样该直线如果和积分区域总是有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限.3 例题解析例 1 计算 ,其中 是由直线 所围成的区域.Dxydxyx,12解:作出积分区域 的图形 作者简介:赵娟(1980-),女,汉族,安徽蚌埠,宿州学院数学系,教师,助教,学士,模糊数学在经济中的应用项目:2006 年省级精品课程高等数学 (序号 111)xyy=1x=2y=x在这个例题中我们既可以选择先对 .若我们选择先对 积
4、 分积 分 也 可 以 选 择 先 对 yx 先 定 下的 积 分 限 根 据 积 分 区 域后 积 分 的 变 量那 么 根 据 口 诀 需 要 先 把积 分x,来.从积分区域图可以看出 .然后我们在 的限 和 21最 大 取 到最 小 取 到yy1内画一条和这两条直线平行的直线,易见这条线只要画在 和 内,则其2y 2左边总是和直线 相交,从而 的积分下限即为 ,而右边总是和直线 相交,xx x从而 的积分上限为 2.这样就完成了二重积分到累次积分的转化: 81)()21(24221 ydyydyxdD若我们选择先对 积分也是可以的。先把后积分的变量 的积分限根据积分区域确y x定下来。从
5、积分区域图易见 最小取到 1 最大取到 2。然后在 和 内画一x12x条和这两条直线平行的直线,只要这条线画在 和 内,则其下边总是和相交,而上面总是 相交。从而 这个积分变量的下限为 1 上限为 。于1yy是该二重积分也可转化为下面的二次积分来计算: 848)2(212113xdxydxxdD例 2 计算 ,其中 是由抛物线 和直线 所围成的区域。yyy解 首先作出积分区域图xyy=1x=2y=xy2=xy=x-2在本题中若我们选择先对 积分,则根据积分区域图和上面介绍的口诀可以知道x该二重积分化为二次积分为: 2152212 8)(dyydyxdD在本题中若我们选择先对 积分,则根据积分区
6、域图我们先把 的上下限定下来,yx由图可见 最小取到 0 最大取到 4 。但在 和 这两条直线之间画和他x 0x4们平行的直线的时候发现在 这条直线的左右两侧情况有所不同:在 的1x 1左侧所画直线上下均与抛物线 相交,而右侧所画直线下面是与直线2相交上面是与抛物线相交。从而本题若选择先对 后对 积分则需要将2xy yx积分区域从直线 处分割成两半来处理:1Dxxydydd4120显然这样计算起来要比上一种方法复杂的多!故当积分区域属这种情况时一般来讲我们会选择先对 后对 积分。还有的情况恰与这种情况相反,那么我们为了x简便起见一般会选择先对 后对 积分。比如:yx例 3:计算 ,其中 是由抛
7、物线 和直线 所围成的区域。Dxyd22xy解 首先作出积分区域图y2=xy=x-2y=x+2y=x2在本题中若我们仍然选择先对 积分,则根据积分区域图易知:积分变量 的最小x y取到 0 最大取到 4。但是在 这两条直线之间画平行于它们的直线的时40和 y候会发现在直线 的上下两侧所画直线与区域图的交点所在的曲线有所不同:1y在直线 的下侧,所画直线左右两端均与抛物线相交。在直线 的上侧, 1y所画直线左端与直线相交右端与抛物线相交。于是二重积分转化为累次积分进行计算时要将积分区域沿直线 分割成两块来处理:1y 41210 yyD xdxdxyd下面我们选择先对 积分看是否可以起到简化计算的
8、效果:y从积分区域图可以看到积分变量 最小取到-1 最大取到 2,在直线 和x 1x之间画平行于它们的直线时易见该直线上端总是与直线 相交下端2x 2y总是与抛物线 相交,从而二重积分化为累次积分如下:2xy2162342152321 12)4( xxdxxdxydxDy=x+2y=x285以上两个例题是根据积分区域选择积分次序以简化计算,积分次序的选择有时还要根据被积函数来选择,比如下面这个例题:例 4:计算 ,其中 是由直线 所围成的区域。dxyeD2Dxyx及1,0解 先画出积分区域图若我们选择先对 积分,根据积分区域图,积分变量 最小取到 0 最大取到xy1,在直线 之间画平行于他们的
9、直线,该直线左端总是与直线10y和相交右端总是与直线 相交,从而二重积分化为累次积分为:xyedyedxedyeyD 31631222 0010 本题中若我们选择先对 积分,则有:1022 2xyyDexe由于 的原函数不能用初等函数表出,因此我们无法求出二重积分的值!2y综上所述,对于初学者在将二重积分转化为累次积分时,应该依积分区域和被积函数的具体情况选择积分的先后顺序,方能达到简化计算的目的。参考文献:【1】杜先能 孙国正。高等数学M。安徽大学出版社,2004【2】华东师范大学数学系。数学分析M。高等教育出版社,2004The integral limit s ascertaining
10、in double integral s calculation ( zhaojuan chenhao)y=1y=x(Department of Mathematics,Suzhou College,Suzhou,Anhui,234000)Abstract:That dual accumulate points calculates ascertaining that middle accumulate points is restricted to is that a priority also is a difficult point to the beginner. The main body of this article aim at ascertaining the method simple and easy to do that accumulate points is restricted to in introducing that one kind of dual accumulate points secretly schemes against.Key words:Double Integral;Repteat Integral ;Integral Limit;Integrate Sequence