1、新课标人教版课件系列,高中数学选修1-1,2.1椭圆,教学目标,1.知识目标 建立直角坐标系,根据椭圆的定义建立椭圆的标准方程, 能根据已知条件求椭圆的标准方程, 进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。 2.能力目标 让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力, 培养学生的观察能力、归纳能力、探索发现能力, 提高运用坐标法解决几何问题的能力及运算能力。,3.情感目标 亲身经历椭圆标准方程的获得过程,感受数学美的熏陶, 通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨, 养成实事求是的科学态度和契而不舍的钻研精神
2、,形成学习数学知识的积极态度。 4、重点难点 基于以上分析,我将本课的教学重点、难点确定为: 重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法, 难点:椭圆的标准方程的推导。,2.1 椭圆及其标准方程,年10月15日9时我国首位航天员杨利伟乘坐的“神舟”五号载人飞船,在酒泉卫星发射中心成功升空。随着那一声冲天而起的火光和共鸣,它顺利地进入了预定轨道。它升起的不仅是载人飞船,还有中国人的骄傲与自信!,设置情境 问题诱导,2005年10月12日上午9时,“神舟六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问: “神舟六号”载人飞船的运行轨道是什么?
3、,神舟六号在进入太空后,先以远地点347公里、近地点200公里的椭圆轨道运行,后经过变轨调整为距地343公里的圆形轨道.,复习提问: 1圆的定义是什么? 2圆的标准方程是什么?,绘图纸上的三个问题,1视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3绳长能小于两图钉之间的距离吗?,导入新课:,探究:,|MF1|+ |MF2|F1F2| 椭圆,|MF1|+ |MF2|=|F1F2| 线段,|MF1|+ |MF2|F1F2| 不存在,x,y,以F1、F2 所在直线为 x 轴,线段 F1F2 的垂直平分线为
4、 y 轴建立直角坐标系,P( x , y ),设 P( x,y )是椭圆上任意一点,设F1F=2c,则有F1(-c,0)、F2(c,0),椭圆上的点满足PF1+PF2 为定值,设为2a,则2a2c,则:,即:,O,b2x2+a2y2=a2b2,探究:如何建立椭圆的方程?,方 程 特 点,(2)在椭圆两种标准方程中,总有ab0;,(4)a、b、c都有特定的意义,a椭圆上任意一点P到F1、F2距离和的一半;c半焦距.有关系式 成立。,2.椭圆的标准方程,(3)焦点在大分母变量所对应的那个轴上;,(1)方程的左边是两项平方和的形式,等号的右边是1;,变式演练 加深理解,解:(1)所求椭圆标准方程为,
5、(2)所求椭圆标准方程为,例2 求适合下列条件的椭圆的标准方程. (1)焦点在x轴上,且经过点(2,0)和点(0,1). (2)焦点在y轴上,与y轴的一个交点为P(0,10),P到它较近的一个焦点的距离等于2.,解:(1)所求椭圆的标准方程为,()所求椭圆的标准方程是,.,求椭圆标准方程的解题步骤:,(1)确定焦点的位置;,(2)设出椭圆的标准方程;,(3)用待定系数法确定a、b的值,写出椭圆的标准方程.,例3 已知椭圆经过两点 ,求椭圆的标准方程,解:设椭圆的标准方程,则有,,解得,所以,所求椭圆的标准方程为,变式题组一,变式题组二,反思总结 提高素质,椭圆标准方程的求法:,一定焦点位置; 二设椭圆方程; 三求a、b的值.,F1(-c,0)、F2(c,0),F1(0,-c)、F2(0,c),平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.,b2 = a2 c2,椭圆的两种标准方程中,总是 ab0. 所以哪个项的分母大,焦点就在那个轴上;反过来,焦点在哪个轴上,相应的那个项的分母就越大.,作业: 一. 人教版选修P42 1,2,再见,