1、- 1 -曲线运动、运动的合成与分解【学习目标】1、知道曲线运动中速度的方向,理解曲线运动是一种变速运动。2、知道物体做曲线运动的条件,理解牛顿第二定律对物体做曲线运动条件的解释。3、理解合运动与分运动的关系、具体问题能够正确区分合运动与分运动。4、掌握运动的合成与分解的方法,能够熟练的应用平行四边形法则作图将合运动与分运动统一在一个平行四边形中并进行计算。5、学会用数学的方法研究物体的运动,并从物体的运动轨迹方程判断物体的运动性质。【要点梳理】要点一、曲线运动速度的方向要点诠释:1、曲线运动速度方向的获取途径其一,生活中的现象如:砂轮边缘飞出的铁屑、雨天车轮甩出的雨滴、弯曲的水管中喷出的水流
2、等;其二,由瞬时速度的定义,瞬时速度等于平均速度在时间间隔趋于零时的极限,从理论上得到曲线运动瞬时速度的方向。2、曲线运动速度的方向质点在某一点的速度,沿曲线在这一点的切线方向,指向前进的一侧3、曲线运动的性质曲线运动的速度方向时刻在变化,速度是矢量,曲线运动的速度时刻在变化,曲线运动一定是变速运动,一定具有加速度,曲线运动受到的合外力一定不等于零。要点二、物体做曲线运动的条件要点诠释:1、物体做曲线运动的条件的获得途径其一,由实际的曲线运动的受力情况可以知道;其二,通过理性分析可以得知,如在垂直于运动的方向上物体受到了合外力的作用,物体的运动方向便失去了对称性,必然向着受力的方向偏转而成为曲
3、线运动。2、物体做直线运动条件当物体受到的合外力与速度的方向在一条直线上或者物体受到的合外力为零时,物体做直线运动。3、物体做曲线运动条件物体做曲线运动条件是:当物体受到的合外力与它的速度方向不在同一条直线上时,物体做曲线运动。也就是说物体做曲线运动,必有:物体具有初速度,即 v00;物体受到合外力的作用,即 F 合 0,或者说加速度 a0;合外力(加速度)与速度不在同一条直线上。4、曲线运动中合外力的切向分量和法向分量的作用对于做曲线运动的物体,把合外力 F 沿曲线的切线方向和法线方向(与切线垂直的方向)分解,沿切线方向的分力 F1使质点产生切线方向的加速度 a1,当 a1和 v 同向时,速
4、度增大,如图 1 所示,此时的合外力方向一定与速度方向成锐角; 当 a1和 v 反向时,速度减小,如图 2 所示,此时的合外力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明 a10,即 F10,此时的合外力方向一定与速度方向垂直。- 2 -图 1vFa1F1F2a2图 2vFa1F1F2a2沿法线方向的分力 F2产生法线方向上的加速度 a2,由于力 F2与速度方向垂直,所以力 F2不能改变速度的大小,只能改变速度的方向。由于曲线运动的速度方向时刻在改变,合外力的这一作用效果对任何曲线运动总是存在的。可见,在曲线运动中合外力的作用效果可分成两个方面:切向分量产生切线方向的加速度 a
5、1,改变速度的大小当合外力的切向分量与速度的方向相同时,物体做加速曲线运动,相反时做减速曲线运动。法向分量产生法线方向的加速度 a2,改变速度的方向只有使物体偏离原来方向的效果,不能改变速度的大小。这正是物体做曲线运动的原因。若 a10,则物体的运动为匀速率曲线运动;而若 a20,则物体的运动为直线运动。5、物体做曲线运动的轨迹弯曲规律根据钢球在磁铁吸引下的曲线运动、石子抛出后的曲线运动以及人造地球卫星的曲线运动等实例,可得到结论:物体的运动轨迹必定在物体速度方向和所受合外力方向之间。由于曲线运动物体的速度方向是时刻改变的,物体在某一点的速度方向就是沿曲线上该点的切线方向,而曲线上任一点的切线
6、总在曲线的外侧,因此,运动物体的曲线轨迹必定向合外力方向弯曲,也即合外力方向指向曲线的内侧。若已知物体的运动轨迹,可判断出物体所受合外力的大致方向。如物体在从 M 运动到 N 的过程中,在运动到点 P 时,其受力方向一定是向上的而不可能向下。要点三、质点在平面内的运动要点诠释:1、平面曲线运动的描写(1)直线运动的描写:用一维坐标系 x=x(t)便可以描写质点的位置、速度、加速度(2)平面曲线运动:可以用平面直角坐标系 xoy 描写质点的位置(x,y) 、速度(v x,v y)和加速度(a x,a y),即可以通过两个方向上的分运动去认识或解决平面曲线运动。(也可以用极坐标来描写平面曲线运动,
7、高中阶段不做要求)2、平面曲线运动位置的确定(1)确定分运动的性质:首先弄清楚质点沿着 X 方向和 Y 方向做什么运动。这要通过具体分析质点在这两个方向上的受力情况和初始条件而获得,即要通过 Fx与vx、F y与 vy的特点和方向关系具体明确。(2)写出质点在 x、y 两个方向的位移时间关系例如,一个质点在 x 方向上受到的合外力为零而初速度不为零,则这个质点在 x 方向上就做匀速运动;如果这个质点在 y 方向上受到恒定的合外力而初速度不为零且与合外力方向相反,- 3 -则这个质点在 y 方向上就做匀减速运动,这个质点任意时刻的位置坐标可以表达为:x=v xt,21tatvy。3、 平面曲线运
8、动轨迹的确定(1)已知 x y 两个分运动,求质点的运动轨迹:只要写出 x y 两个方向的位移时间关系 x=x(t)和 y=y(t) ,由此消除时间 t,得到轨迹方程y=f(x),便知道轨迹是什么形状。例如质点在 x、y 方向上都做匀速直线运动,其速度分别是 vx、v y,求其运动的轨迹方程。第一:写位移方程 x=v xt、y=v yt ;第二:消时间 t 得到轨迹方程 kxv;可见两个匀速直线运动的合运动的轨迹仍然是直线。(2)定性的判断两个分运动的合运动的轨迹是直线还是曲线:由曲线运动的条件知,只要看质点的初速度方向和它受到的合外力的方向是否共线便知。例如,船在流水中渡河问题,船同时参与了
9、沿垂直于河岸 OA 的方向和沿着水流动方向 OB的两个匀速运动,船实际进行的是沿 OC 方向的运动,所以 OC 是合运动,由于两个方向的运动都是匀速运动,其合外力为零,所以船实际的运动轨迹是一条直线。 A C v水v船 B O如果船头对准对岸( vA船 )做初速为零的匀加速直线运动,所以有垂直河岸向上的合外力,而合速度方向则是偏向下游的,所以船的实际运动(合运动)是曲线运动。 A B v v水 C St水 水 D a航 12 要点四、运动的合成和分解要点诠释:1、运动的合成与分解由描写各分运动的量,求合运动的相关量叫运动的合成;由描写合运动的量求各个分运动相关量叫运动的分解。- 4 -2、在平
10、面曲线运动中由分运动的加速度、速度、位移,求质点的合加速度速度和位移 (1)加速度、速度和位移都是矢量,其合成和分解都遵守平行四边形法则;(2)平面运动任意时刻的加速度、速度、位移:加速度的大小 2yxa 加速度的方向 xyatn合速度的大小 2yxv 合速度的方向 xyvt合位移的大小 2s 合位移的方向 tan3、由合运动的加速度、速度及位移求分运动的加速度、速度及位移描写合运动的物理量和描写分运动的相关物理量,被统一在同一个相关的平行四边形中,运动的分解是运动合成的逆运算,因此,由合运动的加速度、速度及位移求分运动的加速度、速度及位移的方法与运动的合成完全一样。例如:由上面的平行四边形可
11、得分运动的位移、速度、加速度(运用已知条件解三角形)4. 合运动的判断方法物体实际进行的运动就是合运动。要点五、合运动与分运动、分运动与分运动之间的关系要点诠释:1、等时性质点所做的各个分运动在同一时间里完成,各个分运动也当然的和合运动在同一时间里完成,也就是说,在一个具体问题的某一过程中,由一个分运动求得的时间和由合运动求得的时间是相同的。2、等效性各个分运动合成后的综合效果与合运动的效果是完全相同的,否则运动的合成和分解便失去了意义。 3、独立性同时参与的各个分运动是互相独立、互不影响的,即每一个方向上的运动仅由这一方向质点的受力情况和初始条件决定。 【典型例题】类型一、曲线运动的条件和性
12、质例 1、关于曲线运动,下列说法正确的是( )A. 初速为零的物体在恒力作用下不可能做曲线运动B. 初速为零的物体在变力作用下,有可能做曲线运动C. 做曲线运动的物体,加速度一定不为零D. 做曲线运动的物体,加速度可能为零ay aaxvy vvxvxy sx- 5 -【思路点拨】物体做曲线运动的条件是合外力方向与速度方向不在一条直线上,因为速度时刻在变,所以曲线运动是变速运动。【答案】ABC【解析】物体做曲线运动的条件是合外力方向与速度方向不在一条直线上,因为速度时刻在变,所以曲线运动是变速运动。初速为零的物体在恒力作用下只能做匀变速直线运动,故 A 正确;当初速为零的物体在运动过程中,力与速
13、度不共线,物体将做曲线运动,故 B 正确;曲线运动是一种变速运动,其加速度一定不为零。故 C 正确。【总结升华】熟练地运用分析运动的方法(分析物体的受力特点和合力与运动方向的关系) 、准确地理解曲线运动的性质和曲线运动的条件是顺利解题的关键。例 2、如图所示,一质点做加速曲线运动从 M 点到 N 点,当它经过点时,其速度 v 和加速度 a的方向关系正确的是( )【思路点拨】准确的理解质点从 M 点到 N 点做加速曲线运动是解题的关键和突破口。【答案】C【解析】物体从 M 到 N 做加速运动,说明 a 的切向分量与 v 同向,曲线运动的合外力一定指向曲线凹的一侧,其加速度也一定指向曲线凹的一侧,
14、所以正确答案 C。【总结升华】做曲线运动的物体所受到合外力的切向分量和法向分量分别起着改变速度的大小和方向的作用。做曲线运动的物体其所受合外力方向一定指向轨迹的内侧。举一反三【高清课程:运动的合成与分解 例 1】【变式】某质点在恒力 F 作用下,从 A 点沿下图中曲线运动到 B 点,到达 B 点后,质点受到的力大小仍为 F,但方向相反,则它从 B 点开始的运动轨迹可能是图中的( )A曲线 a B直线 b C曲线 c D三条曲线均有可能【答案】A类型二、分运动与合运动的特点和应用例 3、关于运动的合成与分解,下述说法中正确的是( )A、合运动的位移为分运动的位移的矢量和 B、合运动的速度一定比分
15、运动的速度大 C、合运动和分运动具有同时性 D、合运动的速度与合运动的加速度方向一定一致- 6 -【思路点拨】分析此题必须从分运动与合运动、分位移与合位移、分速度与合速度以及分运动的时间与合运动的时间关系上入手。【答案】AC【解析】运动的合成与分解遵循平行四边形定则,合运动的位移为分运动的位移的矢量和,选项 A 正确;根据平行四边形定则可知,当两个分运动方向夹角小于 90时,合运动的速度大于分运动;分运动的夹角大于 90甚至相反时,合速度将变小,甚至可能为零,选项 B 错;当一个运动分解为两个分运动或几个分运动时,几个分运动各自遵循独立的运动规律而不相互干扰,但合运动与分运动,分运动与分运动间
16、运动时间相同,同时进行,具有等时性,选项 C 正确;合运动的速度方向不一定和合加速度方向相同,如果相同,则合运动为加速直线运动,如果相反,则合运动为减速直线运动,如果不在同一直线上,合运动将是曲线运动,选项 D 错。故正确答案为 AC。【总结升华】合运动与分运动具有等时、等效、独立的特点,它们的关系满足平行四边形法则。举一反三【变式 1】关于运动的合成与分解,下述说法中正确的是( )A、合运动的速度大小等于分运动的速度大小之和 B、物体的两个分运动是直线运动,则它的合运动一定是直线运动 C、合运动和分运动具有同时性 D、合运动是曲线运动,则其分运动中至少有一个是曲线运动 【答案】C【解析】运动
17、的合成与分解遵循平行四边形定则,故合速度的大小介于两分运动速度大小之差与两分运动速度大小之和之间,故 A 选项错误;物体的两个分运动是直线运动,说明两个分力与两分速度各自在同一直线上,但两个分力的合力、两分速度的合速度方向却不一定在同一直线上,即两分运动是直线运动,合运动不一定是直线运动;反之,合运动是曲线运动,分运动也不一定就是曲线运动,故 B、D 选项错误。当一个运动分解为两个分运动或几个分运动时,几个分运动各自遵循独立的运动规律而不相互干扰,但合运动与分运动,分运动与分运动间运动时间相同,同时进行,具有等时性,故选项 C 正确。 【变式 2】若一个物体的运动是两个独立的分运动合成,则错误
18、的是( )A、若其中一个分运动是变速运动,另一个分运动是匀变速直线运动,则物体的合运动一定是变速运动 B、若两个分运动都是匀速直线运动,则物体的合运动一定是匀速直线运动 C、若其中一个是匀变速直线运动,另一个是匀变速直线运动,则物体的运动一定是曲线运动 D、若其中一个分运动是匀加速直线运动,另一个分运动是匀减速直线运动,合运动可以是曲线运动 【答案】C 【解析】运动的合成与分解实际上就是对描述运动的几个物理量位移、速度、加速度的合成与分解,然后根据加速度与速度的方向关系来判断物体的具体运动状态。类型三、渡河问题例 4、河宽为 d,水流速度为 v1,小汽艇在静水中航行的速度为 v2,且 12,如
19、果小汽艇航向与河岸成 角,斜向上游航行,求:- 7 -(1)它过河需要多少时间?(2)到达对岸的位置?(3)若以最短的时间渡河,航向应如何?(4)若要直达正对岸,航向又应怎样?【思路点拨】船同时参与了相对于水流的运动和随水流顺水而下两个运动,船对地的运动是这两个运动的合运动。同时参与的各个分运动是互相独立、互不影响的,可根据各个分运动的规律来求解问题。【解析】如图,船同时参与了相对于水流的运动和随水流顺水而下两个运动,船对地的运动是这两个运动的合运动。同时参与的各个分运动是互相独立、互不影响的,可根据各个分运动的规律来求解问题。 B A C v2 O 1 D (1)根据分运动与合运动的独立性和
20、等时性,过河时间可按下列三种方法计算:tBvtAtv21,根据本题可知 tOvdv22sinsi。(2)如上图,C 点是 O 点正对岸上的一点,以 v1 、v 2 为邻边做平行四边形,合速度的方向沿着 OA ,则1212ddABvt(cos)tansin(3)要用最短的时间过河,船过河所用的时间 si2vt,可以看出,当 90即船头指向正对岸时, t最小。(4)如果直达正对岸,即 ACACvdv(cos)sin212,则有 210,- 8 -cosv12即 arcosv12 。【总结升华】 (1)要正确理解渡河问题:船速 v 船 大小确定时,船头指向与河岸垂直时,小船有最短渡河时间 船vdt。
21、最短渡河时间与水流速度无关。如图: 当船速 v 船 大于水速 v 水 时,实际运动方向(合速度的方向)与河岸垂直时渡河位移最小,最小位移 s 等于河宽 d;当船速 v 船 小于水速 v 水 时,当船头指向和实际运动方向垂直时,渡河位移最小,为船水。如图:(2)灵活的运用数学知识是解决具有一定难度物理问题的关键,注意体会和运用。举一反三【高清课程:运动的合成与分解 例 3】【变式】在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为 v1,摩托艇在静水中的航速为 v2战士救人的地点 A 离岸边最近处 O 的距离为 d如战士想在最短时间内将人送上岸,则摩托艇登陆的地点
22、离 O 点的距离为( )【答案】C类型四、关联速度问题例 5、如图示,以速度 v沿竖直杆匀速下滑的物体 A,用细绳通过定滑轮拉物体 B 在水平面上运动,当绳与水平面夹角为 时,物体 B 运动的速率是_。- 9 -【思路点拨】B 物体的速率就是绳子的速率,但是绳子的速率并不是 A 物体的速率。弄清楚绳子的速率和 A 物体的速率之间的关系是解题的关键。【答案】 vsin【解析】此沿杆竖直向下的速度 v即是物体 A 的合速度 vA合 ,B 的速度是 合Bv在沿绳子方向上的一个分速度,也就是说,物体 A 的速度分解为沿着绳子方向上的 v1和垂直于绳子方向的速度 v2 ,做出的平行四边形是矩形,由此得到
23、 B 物体的速度是 v1= sin。 A v1 2 【总结升华】弄清哪个是合运动是解题的关键。举一反三【变式】 如图所示,汽车以速度 v 匀速行驶,当汽车到达 P 点时,绳子与水平方向的夹角是 ,此时物体 M 的速度的大小?【解析】物体 M 的速率即右端绳子上移的速率,而右端绳子上移的速率与左端绳子在沿绳子方向的速率是相等的,此速率可以由左端绳子与汽车相连的端点的运动速度分解而得到这个端点实际上是和汽车一起水平向左以速度 v 运动。实际速度 v 即是合速度。左端绳子有两个运动效果,一是沿绳的方向拉长;二是绕滑轮顺时针转动。如图所示把 v分解到沿绳子的方向和与绳子垂直的方向,则沿绳的方向的速率即是物体 M 的速率。A B A - 10 -v1 v 绳 由平行四边形法则得: v绳 cos即是 M 的速率。