收藏 分享(赏)

微积分课程主要内容.doc

上传人:清凉的夏天 文档编号:19355932 上传时间:2023-03-14 格式:DOC 页数:17 大小:111KB
下载 相关 举报
微积分课程主要内容.doc_第1页
第1页 / 共17页
微积分课程主要内容.doc_第2页
第2页 / 共17页
微积分课程主要内容.doc_第3页
第3页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、微积分课程主要内容微积分主要内容: 课程说明 教学目的与要求 课程内容概要 教学方法 评分标准 教学大纲 参考材料课程说明:微积分课程是教育部在普通高等学校经济管理类专业中设置的核心课程之一,它也是其他经济数学课程, 如线性代数、概率论与数理统计等的基础。微积分在经济科学、管理科学中有着广泛的应用, 更是现代经济科学研究与应用的重要工具。因此,学好微积分课程不仅对学习后继课程是必不可少的,而且对掌握现代经济管理理论并应用于实际也是很有必要的。教学目的与要求:微积分是经济管理类专业的一门基础课程,是学习现代经济科学的重要工具。通过教学,使学生掌握微积分基本理论,基本知识和基本方法,具有比较熟练的

2、计算能力并为学好其他后继数学课程以及各门经济类课程打下扎实的数学基础,从而能正确地运用数学工具解决经济类专业学习中的问题。课程内容概要:本课程以微积分学为核心内容,主要包括函数、极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分、无穷级数、多元函数微积分学、微分方程与差分方程等。一元函数和多元函数是微积分研究的对象,而极限理论则是最重要的基础。导数、微分、不定积分、定积分、无穷级数这些基本概念均是借助于极限建立起来的。微分方程则作为微积分的延伸和应用。教学方法:以课堂教学为主,部分章节可根据学生的情况和实际需求采用各类实践教学活动。评分标准: 平时情况:出勤、作业、课堂讨论 占30

3、% 期末考试: 占70% 教学大纲:教学内容及时间进度安排:(详见附件)本课程周学时6(上学期)4(下学期),总学时136,学分8.第一章 函 数一、内容提要1预备知识:实数及其几何表示,实数的绝对值,绝对值的基本性质,绝对值不等式,区间与邻域的概念2函数概念:常量与变量,函数的定义域与表示法3函数的几种简单性质:单调性,有界性,奇偶性,周期性4反函数:反函数的定义及其图形,反三角函数及其主值5复合函数的概念6初等函数:基本初等函数的定义,定义域及其图形,初等函数的定义7分段函数:分段函数的概念及其图形特征8建立函数关系举例:总成本函数,总收入函数,总利润函数,需求函数,供给函数等二、要求与说

4、明1理解实数、实数绝对值及邻域的概念掌握简单绝对值不等式的解法2理解函数、函数的定义域和值域等概念,知道函数的表示法3知道函数的单调性、有界性、奇偶性、周期性并掌握其图形的特征4了解反函数的概念,知道函数与反函数的几何关系,给定函数会求其反函数5理解复合函数的概念,掌握将一个复合函数分解为较简单函数的方法6熟练掌握基本初等函数的性质及图形7理解初等函数的概念,了解分段函数的概念8会建立简单应用问题的函数关系第二章 极 限 与 连 续一、内容提要1数列极限的定义与几何意义,数列极限的唯一性及收敛数列的有界性2时函数的极限,时函数的极限,函数极限的几何解释,左、右极限3无穷小量的定义与基本性质,无

5、穷小量的比较,无穷大量的定义,无穷小量与无穷大量的关系4极限的四则运算5极限的基本性质:唯一性、有界性、保号性、极限不等式等6极限存在的准则:准则(夹逼准则),准则(单调有界数列必有极限)7两个重要极限:,8函数的连续性,左连续与右连续,函数连续的和、差、积、商的连续性,反函数与复合函数的连续性,初等函数的连续性,分段函数的连续性9闭区间上连续函数的基本定理:有界性定理,最值定理,介值定理,介值定理的推论(零点定理)二、要求与说明1理解数列与函数极限的概念(关于数列与函数极限的分析定义不作过高的要求)2理解无穷小量的概念和基本性质,掌握无穷小量比较的方法,了解无穷大量的概念,知道无穷小量与无穷

6、大量之间的关系3了解两个极限存在的准则,并能用于求一些简单极限的值4熟练掌握两个重要极限及其应用5理解函数连续性与间断的概念,掌握函数间断点的分类,掌握讨论分段函数连续性的方法6了解连续函数的性质,理解初等函数在其定义区间内必连续的结论7了解闭区间上连续函数的基本定理(定理不证明,只作几何说明)会用零点定理证明方程实根的存在性8熟练掌握求极限的基本方法:利用极限运算法则、无穷小量性质、两个重要极限以及函数的连续性等求极限的值第三章 导 数 与 微 分一、内容提要1变速直线运动的速度,平面曲线的切线的斜率,导数的定义与几何意义,可导与连续的关系2基本初等函数的导数公式3导数的四则运算4反函数与复

7、合函数的导数,隐函数的导数,对数求导法5高阶导数的概念与求法6微分的定义与几何意义,可导与可微的关系,微分法则与微分基本公式,一阶微分形式的不变性7导数与微分的简单应用:近似计算,*误差估计二、要求与说明1理解导数的概念、导数的几何意义,了解可导与连续的关系2熟练掌握基本初等函数的导数公式3熟练掌握导数的四则运算公式4了解反函数的导数公式(公式证明不作要求)5熟练掌握复合函数的求导公式6熟练掌握取对数求导法和隐函数求导法7了解高阶导数的概念,掌握求二阶、三阶导数及某些简单函数的阶导数的方法8理解微分的概念,了解可导与可微的关系,以及一阶微分形式的不变性,熟练掌握求可微函数微分的方法,掌握微分在

8、近似计算中的简单应用第四章 中值定理与导数应用一、内容提要1罗尔定理,拉格朗日定理,柯西定理2罗必达法则与各种未定式的定值法3函数单调性的判别法4函数极值的定义,函数取极值的必要条件与充分条件,函数最值的概念,求函数最值的方法,求函数最值的基本步骤5曲线凹凸性与拐点的定义、判别法与求法,曲线的渐近线的定义与求法6函数作图的基本步骤与方法7变化率及相对变化率在经济分析中的应用边际分析及弹性分析二、要求与说明1能叙述罗尔定理、拉格朗日定理、柯西定理,知道这些定理之间的关系,会利用这些定理证明一些简单的证明题2熟练掌握罗必达法则与各种未定式的定值方法只证型未定式的罗必达法则,注意罗必达法则适用的条件

9、3熟练掌握函数单调性的判别方法及单调性的简单应用4熟练掌握求函数极值与最值的方法,知道函数的极值与最值的关系与区别,会求解某些简单的经济应用问题5熟练掌握曲线凹凸性判别方法,熟练掌握求曲线凹向、拐点及渐近线的方法6掌握函数作图的方法与步骤,会作某些简单函数的图形7理解边际、弹性的概念及其经济意义,会用需求弹性分析总收益的变化第五章 不 定 积 分一、内容提要1原函数概念,不定积分的几何意义,不定积分的性质2基本积分表3换元积分法(包括简单无理函数的积分)4分部积分法5简单有理函数积分举例二、要求与说明1理解原函数与不定积分的概念,掌握不定积分的基本性质2熟练掌握基本积分表3熟练掌握计算不定积分

10、的两种换元积分法和分部积分法4会计算简单的有理函数和简单无理函数的不定积分第六章 定 积 分一、内容提要1曲边梯形的面积定积分的定义与意义定积分的基本性质积分中值定理2变上限积分及其求导方法,原函数存在定理,牛顿-莱布尼兹公式3定积分的换元法与分部积分法4定积分的应用:平面图形的面积,两种几何体的体积,简单的经济应用5广义积分初步:无穷积分的概念,无穷积分收敛与发散的定义,无穷积分的计算,瑕积分的概念,瑕积分收敛与发散的定义,瑕积分的计算,函数的定义、性质与递推公式二、要求与说明1理解定积分的概念与基本性质,掌握积分中值定理2熟练掌握牛顿-莱布尼兹公式,熟练掌握变限积分的导数的求法3熟练掌握计

11、算定积分的换元法与分部积分法4掌握用定积分计算平面图形的面积和两种几何体体积的方法,会用定积分求解一些简单的经济应用题5了解广义积分收敛与发散的概念,掌握计算收敛广义积分的方法,知道广义积分,的敛散条件,知道函数的概念、基本性质与递推公式*第七章 无 穷 级 数一、内容提要1无穷级数及其一般项与部分和的概念,无穷级数收敛与发散的定义,收敛级数和的概念,几何级数与调和级数的敛散性,无穷级数收敛的必要条件,收敛级数的基本性质2正项级数的概念,正项级数收敛的必要条件,正项级数敛散性的比较判别法、比值判别法,级数的敛散性3交错级数的概念,交错级数敛散性的莱布尼兹判别法,任意项级数的绝对收敛与条件收敛的

12、概念,绝对收敛与条件收敛的判别法4幂级数的概念,幂级数的收敛半径、收敛区间以及和函数的概念,幂级数敛散性判别法,幂级数的收敛半径、收敛区间的求法,幂级数的基本性质5泰勒公式及其余项,泰勒级数与马克劳林级数,幂级数展开定理,将函数展成幂级数的方法(直接展开法和间接展开法),简单初等函数的幂级数展开二、要求与说明1理解无穷级数、部分和、收敛、发散以及和的概念2掌握几何级数与级数(包括调和级数)敛散性判别条件3掌握级数收敛的必要条件,以及收敛级数的基本性质4掌握正项级数的比较判别法,掌握正项级数的比值判别法5掌握交错级数的莱布尼兹判别法6了解任意项级数绝对收敛与条件收敛的概念,掌握绝对收敛与条件收敛

13、的判别方法7了解幂级数的收敛区间与和函数的概念,会求幂级数的收敛半径8知道幂级数在其收敛区间内的一些基本性质9了解泰勒级数的概念,会用的麦克劳林展开式将一些简单函数展开成幂级数第八章 多元函数微积分学一、内容提要1空间直角坐标系,空间两点间的距离,空间曲面与曲面方程,平面上的区域,点的邻域,开区域、闭区域、有界区域与无界区域等概念2多元函数的定义,二元函数的定义域与几何意义,二元函数的极限与连续性3偏导数与全微分的定义与计算方法4多元复合函数微分法与隐函数微分法5高阶偏导数的定义与求法6二元函数极值的定义,极值的必要条件与充分条件,条件极值的概念与拉格朗日乘数法,多元函数最值的概念与求法7曲顶

14、柱体的体积,二重积分的定义与基本性质,在直角坐标系与极坐标系下计算二重积分二、要求与说明1了解空间直角坐标系的有关概念,会求空间两点间的距离,了解平面区域,区域的边界,点的邻域,开区域、闭区域、有界区域与无界区域等概念2了解多元函数的概念,掌握二元函数的定义与表示法3知道二元函数的极限与连续性的概念4理解二元函数偏导数与全微分的概念,熟练掌握求偏导数与全微分的方法,熟练掌握求多元复合函数偏导数的方法5熟练掌握由一个方程确定的隐函数求偏导数的方法6了解二元函数的极值与条件极值的概念,掌握用二元函数极值存在的必要条件和充分条件求二元函数极值的方法,掌握用拉格朗日乘数法求简单二元函数条件极值问题的方

15、法7理解二重积分的概念、几何意义与基本性质,熟练掌握在直角坐标系与极坐标系下计算二重积分的方法并计算一些简单的二重积分第九章 微 分 方 程一、内容提要1微分方程的定义,微分方程的阶、解、通解、特解、初始条件等基本概念2可分离变量的方程、齐次方程、一阶线性微分方程3二阶常系数线性齐次微分方程的概念及解法*几类特殊的高阶微分方程的解法4微分方程在经济中的简单应用二、要求与说明1了解微分方程的阶、通解与特解等概念2掌握可分离变量的方程、齐次方程、一阶线性微分方程的解法3会解二阶常系数线性齐次微分方程,*会解几类特殊的高阶微分方程4会求解一些简单的经济应用问题*第十章 差 分 方 程一、内容提要1差

16、分与方程的概念,差分方程的阶与解(通解与特解)2一阶齐次差分方程的通解,一阶非齐次差分方程的特解与通解3二阶齐次差分方程的通解,二阶非齐次差分方程的特解与通解4差分方程在经济学中的简单应用二、要求与说明1了解差分、差分方程,差分方程的阶与解(通解与特解)等概念2会求一阶与二阶常系数线性齐次差分方程的解3会求某些特殊的一阶与二阶常系数线性非齐次差分方程的特解与通解会求二阶齐次差分方程的通解、二阶非齐次差分方程的特解与通解4会求解一些简单经济应用问题参考材料l 教学教材赵树媛著. 微积分(第三版). 北京:中国人民大学出版社,2007.l 参考书朱来义著. 微积分(第三版). 北京:高等教育出版社

17、,2011.附件1:教学进度表(上学期)课程总学时数:136 上学期总学时数:72 周学时数:6周次日期章教 学 内 容实践教学备 注7一绪论 1.1集合 1.2实数集 1.3函数关系 1.4函数表示法 1.5建立函数关系的例题 1.6函数的几种简单性质 1.7反函数,复合函数 1.8初等函数21.原则上应按进度表的安排授课,若实际进度超过了规定的进度可安排习题课或课堂练习。2.(A)组的习题应要求学生全做,由教师自己指定部分习题交给老师批改。3.绪论课主要的目的是对新生进行一次大学数学的课程教育,其讲授的内容及详略可由各位教师自定。4.第一章中1.1、1.8略讲,1.3(一) 1.9不讲,可

18、让学生自学。5.用“-N”、“-”语言定义极限不能省略,不要求学生会做有关的习题,但要领会,以便理解有关的定理的证明。82.1数列的极限 2.2函数的极限2.3变量的极限 2.4无穷大量与无穷小量9二2.5极限的运算法则2.6两个重要的极限 2.7函数的连续性 第二章复习小结、习题课2103.1引出导数概念的例题 3.2导数概念 3.3导数的基本公式与运算法则113.4高阶导数 3.5微分第三章 复习小结、习题课212三4.1中值定理 4.2罗必达法则4.3函数的增减性 134.4函数的极值 4.5最大值与最小值,极值的应用问题 4.6曲线的凹向与拐点144.7函数图形的作法 4.8导数在经济

19、中的应用 第四章复习小结、习题课215四5.1不定积分的概念 5.2不定积分的性质 5.3基本积分公式 5.4第一类换元法165.4第二类换元法 5.5分部积分法 第五章 复习小结 习题课217期末复习总结218期末考试教学进度表(下学期)课程总学时数:136 下学期总学时数:64 周学时数:4周次日期章教学内容实践教学备注1五6.1引出定积分概念的例题 6.2定积分的定义 6.3定积分的基本性质6.4微积分基本定理1.第一学期进度中的说明也适用于本学期。2.8.8(三)最小二乘法可让学生自学。26.5定积分的换元积分法6.6定积分的分部积分法3六6.7定积分的应用46.8广义积分与函数第六章 复习小结 习题课258.1空间解析几何简介8.2多元函数的概念8.3二元函数的极限与连续6七8.4偏导数与全微分78.5复合函数的微分法与隐函数的微分法88.6 二元函数的极值29八“五一”假期108.7二重积分(一)二重积分的基本概念11(二)二重积分的计算(1)在直角坐标系下二重积分的计算12 (2)在极坐标系下二重积分的计算13第八章 复习小结 习题课2149.1微分方程的一般概念 9.2一阶微分方程15九9.3几种二阶微分方程第九章 复习小结 习题课216期末复习总结217期末考试1817 / 1717 / 17

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 往来文书

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报