1、 博士学位论文基于压缩感知的宽带频谱感知技术研究RESEARCH ON WIDE-BAND SPECTRUMSENSING BASED ON COMPRESSIVE SENSING李含青哈尔滨工业大学2014 年 7月国内图书分类号:TN929.5国际图书分类号: 621.396学校代码:10213密级:公开工学博士学位论文基于压缩感知的宽带频谱感知技术研究博 士 研 究 生:李含青 导 师 :郭庆教授 申 请 学 位:工学博士 学 科:信息与通信工程 所 在 单 位:电子与信息工程学院 答 辩 日 期:2014 年 7月 授予学位单位 :哈尔滨工业大学 Classified Index: T
2、N929.5U.D.C: 621.396Dissertation for the Doctoral Degree in EngineeringRESEARCH ON WIDE-BAND SPECTRUMSENSING BASED ON COMPRESSIVE SENSINGCandidate:Supervisor:Li HanqingProf. Guo QingAcademic Degree Applied for : Doctor of EngineeringInformation and Communication Speciality:EngineeringSchool of Elect
3、ronics and Affiliation:Information Engineering July, 2014 Date of Defence:Degree-Conferring-Institution : Harbin Institute of Technology摘 要摘 要认知无线电在软件无线电的基础上发展而来,能够通过对外界频谱环境的持续感知,及时发现并使用授权频段内尚未被主用户利用的空闲频谱,是一种可以有效提高频谱资源利用效率的智能无线电技术,也能够有效缓解随着无线通信用户数量急剧增加和无线通信技术迅速发展而变得日益严峻的频谱资源稀缺问题。频谱感知技术是构建认知无线电系统、实现认
4、知无线电应用的核心技术,也是保证认知无线电系统发现并充分利用频谱资源、保护授权主用户免受有害干扰的重要前提。随着无线通信业务的高速发展,对无线频谱资源需求急剧增加,为了进一步提高对于频谱资源的利用,宽带频谱感知技术成为认知无线电领域的重要研究方向。在宽带认知无线电系统中,由于主用户通常对宽带频谱利用率较低,只占用其中少量频谱资源,因此主用户信号在频域上具有稀疏性,可以利用压缩感知实现宽带频谱感知。宽带压缩频谱感知技术利用信号的频域稀疏特性,通过随机测量将高维信号投影到低维测量结果,并采用优化算法准确重构原信号,从而能够以远低于奈奎斯特准则的采样速率直接扫描宽带频谱,在降低认知用户采样负担的同时
5、实现高效快速的宽带频谱感知。然而,宽带压缩频谱感知技术仍面临一些挑战:首先,无线衰落环境会造成隐终端问题,影响宽带压缩频谱感知的检测性能;其次,宽带频谱稀疏度先验信息受限会使认知用户在进行宽带压缩频谱感知时难以确定合适的采样速率,进而导致采样开销的浪费或是导致感知性能的下降;此外,认知无线电系统中可能存在一些恶意认知用户,通过在数据融合过程中发送虚假的感知信息来攻击系统,使宽带压缩频谱感知的性能严重降低。为解决上述问题,本文研究了在集中式认知无线电网络和分布式认知无线电网络中,如何通过结合压缩感知理论和多认知用户联合频谱感知技术来提高系统在无线衰落环境下对于宽带频谱的感知性能。针对主用户信号稀
6、疏度先验信息受限的情况,本文基于顺序压缩感知提出能够自适应确定最佳随机测量次数的宽带频谱感知算法。此外,对恶意认知用户攻击下的可靠宽带压缩频谱感知算法也进行了研究。本文主要研究内容和成果列举如下:首先,本文对传统的窄带频谱感知技术进行介绍,并指出感知宽带频谱时认知无线电系统所面临的挑战。在详细介绍压缩感知原理的基础上,分析宽带压缩频谱感知技术特点。针对由无线衰落环境引起的隐终端问题,提出能够解决该问题的多用户联合频谱感知方法。最后对本文重点研究的多认知用户集中- I -哈尔滨工业大学工学博士学位论文式和分布式宽带认知无线电网络结构进行详细分析,并给出了衡量宽带压缩频谱感知的性能指标,为本文研究
7、工作的展开进行了铺垫。其次,为了解决信道衰落和噪声环境所造成的隐终端问题,以及感知宽带频谱所面临的采样负担过大的问题,本文针对所提出的集中式和分布式的宽带认知无线电网络频谱感知场景,在压缩感知理论基础上分别给出了集中式协作和分布式协作的宽带频谱感知算法。认知用户以远低于奈奎斯特准则的速率对宽带信号进行采样,并通过协作获得空间分集增益,有效缓解无线衰落环境对感知性能所造成的不利影响。同时,考虑到各个认知用户本地待重构信号频谱的联合稀疏特性,系统利用迭代支持检测技术从低维的压缩测量结果中准确重构原信号,并提升频谱感知性能。仿真表明,本文算法能够降低系统的采样负担,与基于基追踪和基于分布式一致的常规
8、压缩频谱感知算法相比,能够更有效消除衰落环境的不利影响,更准确地感知宽带频谱。再次,在宽带压缩频谱感知过程中,宽带频谱稀疏度先验信息受限将导致认知无线电系统在压缩感知时采用过高或过低的采样速率对信号进行随机测量,进而产生对采样资源的浪费、或者对原信号的重构不够准确等问题。针对这一问题,本文结合顺序压缩感知理论和自适应稀疏度匹配追踪技术,提出一种新的宽带压缩频谱感知算法。该算法通过顺序测量依次获得测量结果,再根据重构误差来自适应地确定成功重构原信号所需要的最佳随机测量次数。仿真表明在事先无法确知宽带频谱实际稀疏度的情况下,相比基于压缩采样匹配追踪的常规压缩频谱感知算法,本文算法在合理利用系统资源
9、、避免不必要的采样开销的同时,能够确保系统的频谱感知性能。最后,由于具有开放性和可配置型,认知无线电系统在现实中可能会受到恶意认知用户的攻击,其中常见的攻击方式是频谱感知数据伪造攻击。为了解决这一问题,本文分析了认知无线电网络中常见的攻击方式,并将声望系统引入认知无线电系统,针对集中式认知无线电网络提出了可靠的宽带压缩频谱感知算法,根据认知用户在联合频谱感知过程中的表现确定用户声望和权重,消除恶意用户的影响,保证系统感知性能。对于分布式认知无线电网络,本文在共识算法的基础上提出根据动态门限来调整融合权重的宽带压缩频谱感知方法。仿真表明通过结合压缩感知技术,本文算法能够有效减少认知用户感知宽带频
10、谱的采样开销,并且在受到恶意认知用户攻击的集中式和分布式宽带认知无线电网络中都能够实现可靠准确的宽带频谱感知。关键词:压缩感知;认知无线电;联合频谱感知;稀疏度先验信息受限;频谱感知数据伪造攻击- II -AbstractAbstractDeveloping based on software-defined radio, cognitive radio is an intelligentradio technology which is able to discover and utilize idle authorized spectrumwhich is allocated to pri
11、mary user but not being used temporarily, via sensingexternal wireless spectrum environment persistently. Cognitive radio can efficientlysolve the growing problem of spectrum resource scarcity caused by the rapiddevelopment of wireless communication technology and fast growth of wirelessusers. As th
12、e core technology of constructing and implementing cognitive radio,spectrum sensing enables cognitive radio system to discover and utilize spectrumresource, while protecting authorized primary user from harmful interference. As therapid increase of wireless services and growing need of wireless spec
13、trum resource,in order to improve the utilization of spectrum resource, wide-band spectrumsensing has become an important research direction in the field of cognitive radio.In wide-band cognitive radio systems, since the utilization of wide-bandspectrum is very low, and primary users only occupy a s
14、mall amount of spectrum,the signal in frequency domain has sparsity. Compressive spectrum sensing utilizessuch sparsity, projects high-dimensional signals on low-dimensional measurements,and reconstructs original signals using optimization algorithms. In this way,wide-band spectrum can be scanned di
15、rectly at sub-Nyquist rates, and efficientwide-band spectrum sensing can be realized. However, wide-band compressivespectrum sensing encounters many challenges: First, hidden terminal problem isbrought by wireless fading environment, and harms the detection performance ofwide-band spectrum sensing;
16、Second, because of the lack of prior knowledge onsparsity order, cognitive users will have difficulties in deciding accurate samplingrates while sensing the wide-band spectrum, which will lead to sampling wastage orpoor sensing performance; In addition, in the cognitive radio system there may exists
17、ome malicious cognitive users, who will attack the system by sending falsespectrum sensing data during the data fusion process, which will impair theperformance of wide-band spectrum sensing seriously.In order to solve above problems, this dissertation research on how to improvethe performance of wi
18、de-band spectrum sensing using compressive sensing theoryand collaborative spectrum sensing technology, in both centralized and distributedcognitive radio networks. Based on sequential compressive sensing, a wide-bandspectrum sensing algorithm which can adaptively determine the optimal number ofrand
19、om measurements is proposed to solve the problem of sensing without the priorknowledge of the sparsity order. Additionally, a reliable wide-band compressive- III -哈尔滨工业大学工学博士学位论文spectrum sensing is proposed to defend malicious users. The main work andcontributions of this dissertation are as follows
20、:Firstly, this dissertation introduces traditional narrow-band spectrum sensingtechniques, and analyzes the challenges faced when sensing wide-band spectrum.Compressive sensing theory is introduced, and the technical characteristics ofwide-band spectrum sensing are analyzed. Then collaborative spect
21、rum sensingtechnology, which can solve the hidden terminal problem, is introduced. Thisdissertation has proposed a detailed analysis on the structures of multi-usercentralized and distributed wide-band cognitive radio networks, and providedspecifications to evaluate the performance of wide-band comp
22、ressive spectrumsensing.Secondly, in order to solve the hidden terminal problem and reduce the burdenof high sampling rates when sensing wide-band spectrum, this dissertation hasproposed both centralized and distributed wide-band compressive spectrum sensingalgorithms respectively for centralized an
23、d distributed cognitive networks.Cognitive users sample wide-band signals at sub-Nyquist rates, and gain spatialdiversity gain via collaboration to relieve the negative influence caused by fadingenvironment. In addition, original signals are reconstructed utilizing joint sparseproperty via iterative
24、 support detection. Simulations show that the proposedalgorithms can reduce the sampling burden, and have better wide-band detectionperformances than conventional compressive spectrum sensing methods.Thirdly, in the process of wide-band compressive spectrum sensing, the lack ofprior knowledge of wid
25、e-band spectrum sparsity order will cause the system toemploy overmuch or inadequate random measurements, which leads to samplingwastage or poor sensing performance. To solve this problem, this dissertation hasproposed a novel wide-band compressive spectrum sensing algorithm based onsequential compr
26、essive sensing and sparsity adaptive matching pursuit. By obtainingsequential random measurements and reconstruction error, minimal number ofrandom measurements can be determined. Simulations show that the proposedalgorithm can utilize system resource efficiently, and achieve the desired spectrumsen
27、sing performance while avoiding the sampling wastage.Last but not the least, due to the openness and configurability, cognitive radiosystem may encounter spectrum sensing data falsification attacks by maliciouscognitive users. To solve this problem, common forms of attack are analyzed. Areputation-b
28、ased algorithm is proposed for centralized cognitive radio networks,where fusion center uses the reputation of cognitive users to determine their weightsin data fusion, and eliminates the negative influence caused by malicious users. Asfor distributed cognitive radio networks, a consensus-based wide
29、-band compressivespectrum sensing algorithm using dynamic threshold to adjust fusion weights is- IV -Abstractproposed. Simulations show that the proposed algorithms can both effectivelyreduce sampling costs, successfully combat spectrum sensing data falsify attacks,and achieve accurate and reliable
30、wide-band spectrum sensing in respectivelycentralized and distributed cognitive networks.Keywords: compressive sensing; cognitive radio; collaborative spectrum sensing;lacking the prior knowledge of sparsity order; spectrum sensing data falsification- V -哈尔滨工业大学工学博士学位论文目 录摘 要 . IABSTRACT III第 1章 绪 论
31、 . 11.1 课题背景及研究的目的和意义 .11.1.1 课题研究背景 11.1.2 课题研究的目的和意义 31.2 国内外研究现状分析 .51.2.1 认知无线电概念 51.2.2 国内外研究现状分析 91.3 学位论文的主要研究内容 16第 2章 频谱感知技术理论分析 192.1 引言 . 192.2 频谱感知模型 202.2.1 频谱资源定义 202.2.2 二元假设模型 202.3 单认知用户频谱感知技术 212.3.1 典型窄带频谱感知技术 212.3.2 宽带频谱感知面临的挑战 252.3.3 压缩感知理论基础 262.3.4 宽带压缩频谱感知技术 332.4 多认知用户联合宽带
32、频谱感知技术 332.4.1 隐终端问题 342.4.2 联合频谱感知技术 352.4.3 联合宽带压缩频谱感知网络结构 . 372.4.4 恶意用户攻击下的压缩频谱感知网络结构 . 392.4.5 宽带压缩频谱感知性能指标 412.5 本章小结 43第 3章 基于迭代支持检测的宽带压缩频谱感知算法 . 443.1 引言 . 443.2 集中式宽带压缩频谱感知算法 . 45- VI -目 录3.2.1 宽带频谱及信号模型 453.2.2 宽带信号压缩测量 473.2.3 集中式宽带压缩频谱感知算法描述 . 473.2.4 支持集检测门限的确定方法 513.2.5 算法仿真及性能分析 523.3
33、 分布式宽带压缩频谱感知算法 . 563.3.1 系统模型 563.3.2 分布式宽带压缩频谱感知算法描述 . 573.3.3 算法仿真及性能分析 593.4 本章小结 62第 4章 基于顺序压缩感知的自适应宽带频谱感知算法 . 644.1 引言 . 644.2 单用户自适应宽带频谱感知算法 . 654.2.1 问题描述 654.2.2 自适应宽带频谱感知算法描述 664.3 多用户自适应宽带频谱感知算法 . 714.4 算法仿真与性能分析 . 744.5 本章小结 79第 5章 抗 SSDF 攻击的可靠宽带频谱感知算法 . 805.1 引言 . 805.2 基于 B ETA声望系统的集中式
34、宽带压缩频谱感知算法 815.2.1 宽带频谱及信号模型 815.2.2 SSDF 攻击方式 835.2.3 宽带压缩频谱感知建模 845.2.4 Beta 声望系 统 855.2.5 基于声望系统的集中式宽带频谱感知算法描述 . 875.2.6 算法仿真及性能分析 905.3 基于共识概念的可靠宽带频谱感知算法 945.3.1 基于共识的常规联合频谱感知概述 . 955.3.2 分布式联合频谱感知中的 SSDF 攻击方式 . 975.3.3 基于共识的可靠宽带压缩频谱感知算法描述 . 975.3.4 算法仿真及性能分析 995.4 本章小结 103结 论 . 105- VII -哈尔滨工业大
35、学工学博士学位论文参考文献 . 108攻读博士学位期间发表的论文及其它成果 120哈尔滨工业大学学位论文原创性声明和使用权限 . 122致谢 . 123个人简历 . 124- VIII -ContentsContentsAbstract (In Chinese) Abstract (In English) IChapter 1 Introduction 11.1 Background, objective and significance of the dissertation11.1.1 Research background.11.1.2 Objective and significanc
36、e of the dissertation.31.2 Cognitive radio and its research status in China and abroad.51.2.1 The concept of cognitive radio.51.2.2 Research status in China and abroad.91.3 Main research contents of this dissertation.16Chapter 2 Theoretical analysis of spectrum sensing technology 192.1 Introduction1
37、92.2 Spectrum sensing models202.2.1 Definition of spectrum resource.202.2.2 Binary hypothesis model202.3 Single cognitive user spectrum sensing technology212.3.1 Classical narrow-band spectrum sensing technology212.3.2 Challenges faced by wide-band spectrum sensing252.3.3 Introduction of compressive
38、 sensing.262.3.4 Wide-band compressive spectrum sensing technology.332.4 Multiple cognitive user collaborative wide-band spectrum sensing.332.4.1 Hidden terminal problem.342.4.2 Collaborative spectrum sensing352.4.3 Network structure for wide-band compressive spectrum sensing.372.4.3 Network structu
39、re for compressive spectrum sensing under attack.392.4.5 Performance index of wide-band compressive spectrum sensing412.5 Summary43Chapter 3 Wide-band compressive spectrum sensing via iterative supportdetection 443.1 Introduction443.2 Centralized wide-band compressive spectrum sensing453.2.1 Wide-ba
40、nd spectrum and signal model.453.2.2 Compressive measurement of wide-band signal.473.2.3 Algorithm description473.2.4 Determination of the support detection threshold.513.2.5 Simulation results and performance analysis52- IX -哈尔滨工业大学工学博士学位论文3.3 Distributed wide-band compressive spectrum sensing563.3
41、.1 System model563.3.2 Algorithm description573.3.3 Simulation results and performance analysis593.4 Summary62Chapter 4 Adaptive wide-band spectrum sensing using sequential compressivesensing. 644.1 Introduction644.2 Singal user adaptive wide-band spectrum sensing.654.2.1 Problem description.654.2.2
42、 Algorithm description664.3 Multiple user adaptive wide-band spectrum sensing.714.4 Simulation results and performance analysis744.5 Summary79Chapter 5 Reliable wide-band spectrum sensing against SSDF attacks805.1 Introduction805.2 Centralized wide-band compressive spectrum sensing based on Betarepu
43、tation system.815.2.1 Wide-band spectrum and signal model.815.2.2 SSDF attack forms.835.2.3 Compressive measurement of wide-band spectrum845.2.4 Beta reputation system.855.2.5 Algorithm description875.2.6 Simulation results and performance analysis905.3 Consensus-based reliable wide-band spectrum se
44、nsing.945.3.1 Conventional consensus-based collaborative spectrum sensing955.3.2 SSDF attack forms in distributed cognitive network975.3.3 Algorithm description975.3.4 Simulation results and performance analysis995.4 Summary103Conclusions .105References .108Papers published in the period of Ph.D. ed
45、ucation .120Statement of copyright and Letter of authorization .122Acknowledgements 123Resume.124- X -第 1章 绪 论第 1章 绪 论1.1 课题背景及研究的目的和意义1.1.1 课题研究背景作为一种特殊的自然资源,无线频谱具有有限和不可再生的特点。随着现代无线通信技术的持续迅猛发展,以及人们对无线通信业务需求的日益增长,无线频谱资源无法充分满足现行无线通信高速率、高带宽和高质量业务的需要。无线频谱资源稀缺的问题变得越来越严峻,并且严重制约着无线通信研究领域中新技术的应用和发展。为了有效利用珍
46、贵的无线频谱资源,各国政府都成立了专门的机构来规范和管理对于无线频谱资源的使用。无线收发设备的使用者如果想要利用某个频段的频谱资源,必须首先从政府管理部门获得该频段的使用许可。现在国际上主要采用的是静态的频谱管理和分配策略。在这种静态分配策略下,政府管理部门将无线频谱资源以固定的形式划分为互不重叠的频段,并且利用保护频带将划分好的频段分隔开来。这些频段以独占的方式被分配给一些用户来完成通信服务或实现特定的应用,有权使用这些频段的用户被称为主用户或是授权用户。在静态分配策略下,即使在特定的时间或地点授权频段没有被主用户使用,也不允许非授权的用户接入和使用这个空闲的授权频段。大量研究和测试结果表明
47、,尽管现行静态分配策略具有简单易行、方便频谱管理的优点,但是会导致频谱资源的利用效率十分低下,并且是造成现有频谱资源稀缺问题的重要原因之一。 Shared Spectrum 公司在测试报告中给出了所统计的美国国内 6个地区的频谱使用情况,如图 1-1 所示 1。其中频谱利用率平均为 5.2%,最大频谱利用率出现在纽约,为 13.1%;而最小频谱利用率仅为 1% ,在新墨西哥州的国家射频天文台测试得到。北美地区 30MHz3GHz范围频段的频谱使用情况如图 1-2 所示 1,可以看出绝大多数频段的频谱利用率都是非常低的。美国联邦通信委员会 (Federal Communications Comm
48、ission,FCC)的研究结果也表明现 在对于频谱资源的利用情况非常不合理,用于工 业、科研、医疗和陆地移动通信的非授权频谱资源十分紧张,而另一方面大量授权频谱资源却经常处于闲置状态 2。北京交通大学无线宽带移动通信研究所测量了北京地区的频谱利用率情况,发现 698806MHz 频段频谱利用率为 21.29%,850970MHz 频段的频谱 利用率约为 2.33% ,而 10002000MHz 频段的频谱利用率低于 1%3 。- 1 -哈尔滨工业大学工学博士学位论文图 1-1 美国六个区域的频谱 利用率情况统计Fig. 1-1 Utilization of spectrum resources in 6 areas of US