1、反函数课件设计反函数课件设计 1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。1.反函数的概念;2.反函数的求法。反函数的概念。师生共同讨论幻灯片 2 张第一张:反函数的定义、记法、习惯记法。 ;第二张:本课时作业中的预习内容及提纲。讲授新课师:这节课我们来学习反函数 反函数的概念。同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:。师:反函数的定义着重强调两点:根据 y= f(x)中 x 与 y 的关系,用 y 把 x 表示出来,得到 x= ;对于 y 在 c 中的任一个值,通过
2、 x= ,x 在 A 中都有惟一的值和它对应。师:应该注意习惯记法是由记法改写过来的。师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。师:在 y= f(x)中与 y= f -1(y)中的 x、y,所表示的量相同。 ,但地位不同在 y= f(x)中与 y= f 1(x)中的 x 都是自变量,y 都是函数值,即 x、y 在两式中所处的地位相同,但表示的量不同由此,请同学们谈一下,函数 y= f(x)与它的反函数y= f 1(x)两者之间,定义域、值域存在什么关系呢?生:函数的定义域,值域分别是它的反函数的值域、定义域。师:从反函数的概念可知:
3、函数 y= f (x)与 y= f 1(x)互为反函数。从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:由 y= f (x)解出 x= f 1(y),即把 x 用 y 表示出;将 x= f 1(y)改写成 y= f 1(x),即对调 x= f 1(y)中的 x、y。指出反函数的定义域。下面请同学自看例 1课堂练习 课本 P68 练习 1、2、3、4。课时小结本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。课后作业一、课本 P69 习题 1、2。二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。板书设计课题: 求反函数的方法步骤:定义:注意: 小结一一映射确定的函数才有反函数函数与它的反函数定义域、值域的关系