收藏 分享(赏)

橡胶工艺基础知识简述.docx

上传人:拉拉链 文档编号:18549504 上传时间:2023-03-11 格式:DOCX 页数:60 大小:89.32KB
下载 相关 举报
橡胶工艺基础知识简述.docx_第1页
第1页 / 共60页
橡胶工艺基础知识简述.docx_第2页
第2页 / 共60页
橡胶工艺基础知识简述.docx_第3页
第3页 / 共60页
亲,该文档总共60页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、橡胶技术基础知识问答一)什么是橡胶老化?在表面上有哪此表现? 答:橡胶及其制品在加工,贮存和使用过程中,由于受内外因素的综合作用而引起橡胶物理化学性质和机械性能的逐步变坏,最后丧失使用价值,这种变化叫做橡胶老化。 表面上表现为龟裂、发粘、硬化、软化、粉化、变色、长霉等。 影响橡胶老化的因素有哪些? 引起橡胶老化的因素有: a)氧、氧在橡胶中同橡胶分子发生游离基链锁反应,分子链发生断裂或过度交联,引起橡胶性能的改变。氧化作用是橡胶老化的重要原因之一。 B臭氧、臭氧的化学活性氧高得多,破坏性更大,它同样是使分子链发生断裂,但臭氧对橡胶的作用情况随橡胶变形与否而不同。当作用于变形的橡胶(主要是不饱和

2、橡胶)时,出现与应力作用方向直的裂纹,即所谓“臭氧龟裂”;作用于变形的橡胶时,仅表面生成氧化膜而不龟裂。 C)热:提高温度可引起橡胶的热裂解或热交联。但热的基本作用还是活化作用。提高氧扩散速度和活化氧化反应,从而加速橡胶氧化反应速度,这是普遍存在的一种老化现象热氧老化。 D)光:光波越短、能量越大。对橡胶起破坏作用的是能量较高的紫外线。紫外线除了能直接引起橡胶分子链的断裂和交联外,橡胶因吸收光能而产生游离基,引发并加速氧化链反应过程。经外线光起着加热的作用。光作用其所长另一特点(与热作用不同)是它主要在橡表面进生。含胶率高的试样,两面会出现网状裂纹,即所谓“光外层裂”。 E)机械应力:在机械应

3、力反复作用下,会使橡胶分子链断裂生成游离荃,引发氧化链反应,形成力化学过程。机械断裂分子链和机械活化氧化过程。哪能个占优势,视其所处的条件而定。此外,在应力作用下容易引起臭氧龟裂。 F)水分:水分的作用有两个方面:橡胶在潮湿空气淋雨或浸泡在水中时,容易破坏,这是由于橡胶中的水溶性物质和清水荃团等成分被水抽提溶解。水解或吸收等原因引起的。特别是在水浸泡和大气曝露的交替作用下,会加速橡胶的破坏。但在某种情况下水分对橡胶则不起破坏作用,甚至有延缓老化的作用。 G)其它:对橡胶的作用因素还有化学介质、变价金属离子、高能辐射、电和生物等。 (二)橡胶老化试验方法可分为哪几类? 答:可分为两大类: 1)自

4、然老化试验方法:又分为老化试验,大气加速老化试验,自然贮存老化试验,自然介质(包括埋地等)和生物老化试验等。 2)人工加速老化试验方法。为热老化、臭氧老化、光老化、人工气候老化、光臭氧老化、生物老化、高能辐射和电老化以及化学介质老化等。 热空气老化试验对于各种胶料来说应选取什么温度等级? 对于天然橡胶来说,试验温度通常50100,合成橡胶通常为50150,某些特种橡胶试验温度则更高。如丁腈橡胶用70150,硅氟胶一般用200300。总之,应根据试验具体确定。(五)什么是硫化? “硫化”一词有其历史性,因最初的天然橡胶制品用硫磺作交联剂进行交联而得名,随着橡胶工业的发展,现在可以用多种非硫磺交联

5、剂进行交联。因此硫化的更科学的意义应是“交联”或“架桥”,即线性高分子通过交联作用而形成的网状高分子的工艺过程。从物性上即是塑性橡胶转化为弹性橡胶或硬质橡胶的过程。“硫化”的含义不仅包含实际交联的过程,还包括产生交联的方法。 (六)硫化过程可分为哪四个阶段?各有什么特点? 答:通过胶料定伸强度的测量(或硫化仪)可以看到,整个硫化过程可分为硫化诱导,预硫,正硫化和过硫(对天然胶来说是硫化返原)四个阶段。 硫化诱导期(焦烧时间)内,交联尚未开始,胶料有很好的流动性。这一阶段决定了胶料的焦烧性及加工安全性。这一阶段的终点,胶料开始交联并丧失流动性。硫化诱导期的长短除与生胶本身性质有关,主要取决于所用

6、助剂,如用迟延性促进剂可以得到较长的焦烧时间,且有较高的加工安全性。 硫化诱导期以后便是以一定速度进行交联的预硫化阶段。预硫化期的交联程度低,即使到后期硫化胶的扯断强度,弹性也不能到达预想水平,但撕裂和动态裂口的性能却比相应的正硫化好。 到达正硫化阶段后,硫化胶的各项物理性能分别达到或接近最佳点,或达到性能的综合平衡。 正硫化阶段(硫化平坦区)之后,即为过硫阶段,有两种情况:天然胶出现“返原”现象(定伸强度下降),大部分合成胶(除丁基胶外)定伸强度继续增加。 对任何橡胶来说,硫化时不只是产生交联,还由于热及其它因素的作用产生产联链和分子链的断裂。这一现象贯穿整个硫化过程。在过硫阶段,如果交联仍

7、占优势,橡胶就发硬,定伸强度继续上升,反之,橡胶发软,即出现返原。七)什么叫焦烧? 答:焦烧是胶料在工艺过程中产生的早期硫化现象。 焦烧实质上是在工艺过程中热和时间对胶料影响的积累,也可以叫做胶料的热历程。胶料的热历程逾长,温度逾高,则可逐渐缩短胶料的焦烧时间。 (胶料在贮存加工成型过程中受热的作用,发生早期硫化(交联)并失去流动性能和再加工的能力,这就是所谓焦烧现象.焦烧问题可以通过哪些途径来解决? 通常可以通过下途径解决: (1)调整硫化体系,为次磺酰胺促进剂的采用,大大改善了防焦烧性能。 (2)改善胶料贮存和加工条件,如加强冷却; (3)采用防焦剂。 (八)理想的防焦剂应具有哪些性能?

8、答:理想的防焦剂应具有下列性能:1、具有优良的防焦性能,对不同促进剂和胶料种选择性小,对其它配合剂不敏感;2、对胶料的硫化特性和硫化胶性能无不良影响;3、贮存稳定和操作性能良好,不结块,不飞扬,分散,不喷霜等,4、符合工业生产安全和卫生要求,5、价廉得,6、最好能兼具其它有益的功能。 (九)防焦剂有哪些类别? 答:按化学结构大致可分为四类: 一、有机酸防焦剂。 这类防焦剂包括邻萘二甲酸酐(PA)、水杨酸,安息香酸,邻醋酸荃萘甲酸等。它们的防焦效果差,对促进剂品种选择性大,而且显著降低硫化速度和硫化胶性能,对皮肤有刺激作用,但这类防焦剂价廉得其中最常用的是邻萘二甲酸酐,一般用于白色配合和工业制品

9、,它对碱性促进剂DPG有效,对MBT出有效,对NOBS,TMTD无效,对硫化速度有影响。 名称外观熔点比重 邻萘二甲酸酐(PA)白色粉末1301.5 安息香酸(萘甲酸)白色粉末黄色粉末1221.27 水杨酸(邻羟萘甲酸)白色与淡灰色粉末1571611.48 邻醋酸萘甲酸白色与乳白色粉末1311.28 亚硝硝莶类防焦剂 二、一些芳族硝基化合物防焦剂,其中最常用的是N亚硝蔡二萘胺(NDPA)。与有机酸不同,这类防焦剂对常用的噻唑类和次磺酰胺类促进剂有较好的防焦作用。NDPA对醛胺类似外的所有促进剂均有防焦作用,通常用量为0.5份,它对仲胺组成的次酰胺促进剂比对伯胺组成的更为有效。但NDPA的防焦效

10、果。亚硝莶类防焦剂并不是一种理想的防焦剂,由于卫生原因及SN型防焦剂的出现,其用量已剧减。 三、次磺酸胺类(SN型)防焦剂 1、含羰蔡的SN型防焦剂 (1)防焦剂CTP(2)防焦剂CCTP (3)防焦剂MTP 2、含硫酰蔡的SN型防焦剂。 (1)防焦剂E(N-三氯甲蔡硫代-萘蔡萘酰胺) (2)防焦剂APR(异丙蔡硫代)N环已萘并噻唑z磺酰 (3)防焦剂DITS 3、含磷SN型防焦剂。 4、其它防焦剂:缩硫酮,CIPA,CTPA(本题摘自特种橡胶制品)2/1985P48防焦剂的发展和应用张隐西 (十)防焦剂的作用以及目的是什么? 答:防焦剂能防止胶料在操作期间产生早期硫化,同时一般又不妨碍硫化温

11、度下捉时宜剂量正常作用。加入该类物质的目的是提高胶料操作安全性,增加胶料或胶浆的贮存寿命。(十一)橡胶为什么要进行硫化?硫化剂有哪几类? 答:橡胶未经硫化以前,缺乏良好的物理机械性能,实用价值不大。当橡胶经过硫化后,由于分子结构的变化,而使其综合性显著改进,尤其是抗拉强度,定伸强度,伸长率,弹性,耐磨性,硬度等更为明显。硫化剂除硫磺、硒、碲以外有含硫氧化物、过氧化物,金属氧化物,醌类、胺类、树脂类等。 (十二)为什么不能无限提高硫化温度? 温度是硫化三大要素之一,与所有化学反应一样,硫化反应随温度升高而加快,并且大体适用范特霍夫定律,即温度每上升810。C(约相当于一个表压的蒸汽压力),其反应

12、速度约增加一倍;或者说,反应时间约减少一半。随着室温硫化胶料的增加和高温硫化出现,硫化温度趋向两个极端。从提高硫化效率来说,应当认为硫化温度越高越好,但实际上不能无限提高硫化温度。首先受到橡胶导热性极小阻碍,对于厚制品来说,采用高温硫化很难使内外层胶料同时达到平坦范围;其次,各种橡胶的耐高温性能不一,有的橡胶经受不了高温的作用,如高温硫化天然橡胶时,溶于橡胶中的氧随温度提高而活性加大,引起强烈的氧化作用,破坏了橡胶的组织,降低了硫化胶的物理机械性能,第三,高温对橡胶制品中的纺织物有害为棉纤维布料超过140时,强力下降,在240下加热四小时则完全破坏。橡胶生产工艺简介综述 橡胶制品的主要原料是生

13、胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶

14、制造等各种加工工艺过程的要求。 掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120以上,甚至高达160-180,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能

15、塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40,时间约为15-20min;采用密炼机塑炼当温度达到120以上时,时间约为3-5min。 丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性 顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。 氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40。 乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。 丁腈橡胶可塑度小,韧性大,塑炼时生热大。开炼时要采用低温40以下、小辊距、低容量以及分段塑炼,这样可以收到

16、较好的效果。 2.2混炼工艺 混炼是指在炼胶机上将各种配合剂均匀的混到生胶种的过程。混炼的质量是对胶料的进一步加工和成品的质量有着决定性的影响,即使配方很好的胶料,如果混炼不好,也就会出现配合剂分散不均,胶料可塑度过高或过低,易焦烧、喷霜等,使压延、压出、涂胶和硫化等工艺不能正常进行,而且还会导致制品性能下降。 混炼方法通常分为开炼机混炼和密炼机混炼两种。这两种方法都是间歇式混炼,这是目前最广泛的方法。 开炼机的混合过程分为三个阶段,即包辊(加入生胶的软化阶段)、吃粉(加入粉剂的混合阶段)和翻炼(吃粉后使生胶和配合剂均达到均匀分散的阶段)。 开炼机混胶依胶料种类、用途、性能要求不同,工艺条件也

17、不同。混炼中要注意加胶量、加料顺序、辊距、辊温、混炼时间、辊筒的转速和速比等各种因素。既不能混炼不足,又不能过炼。 密炼机混炼分为三个阶段,即湿润、分散和涅炼、密炼机混炼石在高温加压下进行的。操作方法一般分为一段混炼法和两段混炼法。 一段混炼法是指经密炼机一次完成混炼,然后压片得混炼胶的方法。他适用于全天然橡胶或掺有合成橡胶不超过50%的胶料,在一段混炼操作中,常采用分批逐步加料法,为使胶料不至于剧烈升高,一般采用慢速密炼机,也可以采用双速密炼机,加入硫磺时的温度必须低于100。其加料顺序为生胶小料补强剂填充剂油类软化剂排料冷却加硫磺及超促进剂。 两段混炼法是指两次通过密炼机混炼压片制成混炼胶

18、的方法。这种方法适用于合成橡胶含量超过50%得胶料,可以避免一段混炼法过程中混炼时间长、胶料温度高的缺点。第一阶段混炼与一段混炼法一样,只是不加硫化和活性大的促进剂,一段混炼完后下片冷却,停放一定的时间,然后再进行第二段混炼。混炼均匀后排料到压片机上再加硫化剂,翻炼后下片。分段混炼法每次炼胶时间较短,混炼温度较低,配合剂分散更均匀,胶料质量高。 2.3压延工艺 压延是将混炼胶在压延机上制成胶片或与骨架材料制成胶布半成品的工艺过程,它包括压片、贴合、压型和纺织物挂胶等作业。 压延工艺的主要设备是压延机,压延机一般由工作辊筒、机架、机座、传动装置、调速和调距装置、辊筒加热和冷却装置、润滑系统和紧急

19、停车装置。压延机的种类很多,工作辊筒有两个、三个、四个不等,排列形式两辊有立式和卧式;三辊有直立式、型和三角形;四辊有型、L型、Z型和S型等多种。按工艺用途来分主要有压片压延机(用于压延胶片或纺织物贴胶,大多数三辊或四辊,各辊塑度不同)、擦胶压延机(用于纺织物的擦胶,三辊,各辊有一定得速比,中辊速度大。借助速比擦入纺织物中)、通用压延机(又称万能压延机,兼有压片和擦胶功能、三辊或四辊,可调速比)、压型压延机、贴合压延机和钢丝压延机。 压延过程一般包括以下工序:混炼胶的预热和供胶;纺织物的导开和干燥(有时还有浸胶) 胶料在四辊或三辊压延机上的压片或在纺织物上挂胶依机压延半成品的冷却、卷取、截断、

20、放置等。 在进行压延前,需要对胶料和纺织物进行预加工,胶料进入压延机之前,需要先将其在热炼机上翻炼,这一工艺为热炼或称预热,其目的是提高胶料的混炼均匀性,进一步增加可塑性,提高温度,增大可塑性。为了提高胶料和纺织物的粘合性能,保证压延质量,需要对织物进行烘干,含水率控制在1-2%,含水量低,织物变硬,压延中易损坏,含水量高,粘附力差。 几种常见的橡胶的压延性能天然橡胶热塑形大,收缩率小,压延容易,易粘附热辊,应控制各辊温差,以便胶片顺利转移;丁苯橡胶热塑性小,收缩率大,因此用于压延的胶料要充分塑炼。由于丁苯橡胶对压延的热敏性很显著,压延温度应低于天然橡胶,各辊温差有高到低;氯丁橡胶在75-95

21、易粘辊,难于压延,应使用低温法或高温法,压延要迅速冷却,掺有石蜡、硬酯酸可以减少粘辊现象;乙丙橡胶压延性能良好,可以在广泛的温度范围内连续操作,温度过低时胶料收缩性大,易产生气泡;丁腈橡胶热塑性小,收缩性大,在胶料种加入填充剂或软化剂可减少收缩率,当填充剂重量占生胶重量的50%以上时,才能得到表面光滑的胶片,丁腈橡胶粘性小易粘冷辊。 2.4压出工艺 压出工艺是通过压出机机筒筒壁和螺杆件的作用,使胶料达到挤压和初步造型的目的,压出工艺也成为挤出工艺。 压出工艺的主要设备是压出机。 几种橡胶的压出特性:天然橡胶压出速度快,半成品收缩率小。机身温度50-60,机头70-80,口型80-90;丁苯橡胶

22、压出速度慢,压缩变形大,表面粗糙,机身温度50-70,机头温度70-80,口型温度100-105;氯丁橡胶压出前不用充分热炼,机身温度50,机头,口型70;乙丙橡胶压出速度快、收缩率小,机身温度60-70,机头温度80-130,口型90-140。丁腈橡胶压出性能差,压出时应充分热炼。机身温度50-60,机头温度70-80。 2.5注射工艺 橡胶注射成型工艺是一种把胶料直接从机筒注入模性硫化的生产方法。包括喂料、塑化、注射、保压、硫化、出模等几个过程。注射硫化的最大特点是内层和外层得胶料温度比较均匀一致,硫化速度快,可加工大多数模压制品。 橡胶注射成型的设备是橡胶注射成型硫化机。 2.6压铸工艺

23、 压铸法又称为传递模法或移模法。这种方法是将胶料装在压铸机的塞筒内,在加压下降胶料铸入模腔硫化。与注射成型法相似。如骨架油封等用此法生产溢边少,产品质量好。 2.7硫化工艺 早先,天然橡胶的主要用途只是做擦字橡皮;后来才用于制造小橡胶管。直到1823年,英国化学家麦金托什才发明将橡胶溶解在煤焦油中然后涂在布上做成防水布,可以用来制造雨衣和雨靴。但是,这种雨衣和雨靴一到夏天就熔化,一到冬天便变得又硬又脆。为了克服这一缺点,当时许多人都在想办法。美国发明家查理古德伊尔也在进行橡胶改性的试验,他把天然橡胶和硫黄放在一起加热,希望能获得一种一年四季在所有温度下都保持干燥且富有弹性的物质。直到1839年

24、2月他才获得成功。一天他把橡胶、硫黄和松节油混溶在一起倒入锅中(硫黄仅是用来染色的),不小心锅中的混合物溅到了灼热的火炉上。令他吃惊的是,混合物落入火中后并未熔化,而是保持原样被烧焦了,炉中残留的未完全烧焦的混合物则富有弹性。他把溅上去的东西从炉子上剥了下来,这才发现他已经制备了他想要的有弹性的橡胶。经过不断改进,他终于在1844年发明了橡胶硫化技术。 在橡胶制品生产过程中,硫化是最后一道加工工序。硫化是胶料在一定条件下,橡胶大分子由线型结构转变为网状结构的交联过程。硫化方法有冷硫化、室温硫化和热硫化三种。大多数橡胶制品采用热硫化。热硫化的设备有硫化罐、平板硫化机等。 2.8其他生产工艺 橡胶

25、制品的生产工艺还有浸渍法、涂刮法、喷涂法、蕉塑法等。 3橡胶配方设计 3.1橡胶的硫化(交联) 交联是橡胶高弹性的基础,其特点是在一个橡胶分子链上仅形成少数几处交联点,因此不会影响橡胶分子链段的运动。 橡胶的硫化体系较多,常见的有:硫黄硫化体系、过氧化物硫化体系、树脂硫化体系、氧化物硫化体系等 3.1.1硫黄硫化体系 主要适应于二烯类橡胶,其硫化活性点是在双键旁边的氢原子。组成: 硫黄 活性剂:氧化锌,硬脂酸 促进剂:噻唑类(DM,M),次磺酰胺类(CZ,NOBS),秋兰姆类(TETD,TMTM,TMTD),胍(D) 图1硫黄硫化体系的结构特点 表1硫黄硫化体系分类 硫化体系硫黄/促进剂(S/

26、A)比交联键组成性能特点 普通硫黄硫化体系1以多硫键为主动态疲劳性能好;老化性能差 半有效硫黄硫化体系(Semi-EV)1以单硫键和双硫键为主老化性能好;压缩永久变形小;无硫化返原 有效硫黄硫化体系(EV)1腈基影响交联作用 PE,EPDM1 EPR0.4 IIR0 3.1.3氧化物硫化体系 这是含卤素橡胶的主要硫化剂。通常有氧化锌/氧化镁(5/4)、氧化铅或四氧化三铅(10-20,耐水制品) 3.2橡胶的填料 未加填料的橡胶,力学性能和工艺性能均较差,无法使用。 3.2.1作用 补强性:拉伸强度,撕裂强度,耐磨性 加工性能 降低成本 3.2.2填料的结构 3.2.2.1粒径 一般来说,粒径越

27、小,强度越高。 表3常用补强剂及填充剂的粒径范围(m) 填料名称缩写料径范围 槽黑23-30 高耐磨炭黑HAF26-35 半补强炭黑SRF60-130 气相法白炭黑水合二氧化硅10-25 沉淀法白炭黑10-40 氧化锌ZnO100-500 轻质碳酸钙CaCO31000-3000 超细碳酸钙白艳华25-100 硬质陶土90%0;H0(吸热),尽可能小。 (2)溶度参数:用Hildebrand方程进行判断。 1与2越接近,H越小。 极性橡胶极性软化剂;非极性橡胶非极性软化剂 (3)溶剂化作用(次要因素):一般认为,橡胶的双键有一定的亲核性,增塑剂酯类有亲电性,通过亲电-亲核作用增加了两者的界面强度

28、,相容性增加,不过这种亲电-亲核作用较弱,因此一般用量不宜过大(5-10phr)。如NR与DBP,NBR与芳烃油的相容性,SBR、BR与NR的差异, (4)CR的溶剂选择原则 3.4橡胶的防护体系 老化是指一切使橡胶性能劣化的过程。如O2,O3,热,光,疲劳,力,催化剂,化学介质等,为了考察这些影响因素,设计了许多试验方法。 氧弹试验O2 热氧老化试验O2,热 光老化试验光(户外,室内,人造光) 臭氧老化试验O3 疲劳试验力,疲劳 DSC、TG热氧化,O2,空气;热降解,N2 3.4.1分类 物理:迁移、隔绝氧的作用 防老剂 化学:无污染型(酚类,1010,1076;硫化二丙酸酯(DLTP,D

29、STP);亚磷酸酯,168);污染型(胺类,RD,D,A) 防护体系对苯二胺类(4010,4010NA) 抗臭氧剂 线形碳氢化合物(粗晶蜡,微晶蜡) 紫外线剂(橡胶不常用、炭黑的作用) 金属离子钝化剂 3.4.2反应机理 (1)链引发 E=0 (2)链增长 E=4-9kcal/mol E=0kcal/mol E=30kcal/mol 而金属粒子则催化ROOH的分解。 (3)链终止 3.5配方设计与硫化橡胶物性的关系 3.5.1拉伸强度 拉伸强度是表征制品能够抵抗拉伸破坏的极限能力。影响橡胶拉伸强度的主要因素有:大分子链的主价键、分子间力以及高分子链柔性。 一拉伸强度与橡胶结构的关系 (1)分子

30、间作用力大,如极性和刚性基团等; (2)分子量增大,范德华力增大,链段不易滑动,相当于分子间形成了物理交联点,因此随分子量增大,拉伸强度增高,到一定程度时达到平衡; (3)分子的微观结构,如顺式和反式结构的影响; (4)结晶和取向 二拉伸强度与硫化体系的关系 (1)交联密度:有一极大值。 (2)交联键类型:随交联键能增加,拉伸强度减小;多硫键具有较高的拉伸强度,因为弱键在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网能均匀地承受较大的应力。对于能产生结晶的NR等,交联弱键的早期断裂,还有利于主链的定向结晶。 三拉伸强度与填料的关系 大量的试验表明:粒径越小,比表面积越大,表面活性

31、越大,结构性越高,补强的效果越好。同时随填料用量增加,有最大值,其大小受橡胶品种和填料类型的影响。 四拉伸强度与软化剂的关系 软化剂的加入会损失拉伸强度,且与软化剂与橡胶的相容性有关。 3.5.2撕裂强度 橡胶的撕裂是由于材料中的裂纹或裂口受力时迅速扩大而导致破坏的现象,一般是沿着分子链数目最小,即阻力最小的途径发展。主要与橡胶应力-应变曲线的形状和粘弹性有关。与橡胶品种、硫化体系、软化剂均有关系。配方设计与硫化胶物理性能的关系一.拉伸强度 拉伸强度表征制品能够抵抗拉伸破坏的极限能力 橡胶的拉伸强度: 未填充硫化胶:聚氨酯橡胶PUR天然橡胶NR/异戊IR氯丁橡胶CR丁基橡胶IIR氯磺化聚乙烯C

32、SM丁晴橡胶NBR/氟橡胶FKM顺丁橡胶BR三元乙丙橡胶EPDM丁苯橡胶SBR丙烯酸酯橡胶ACM氯醇橡胶CO硅橡胶Q 填充硫化胶:聚氨酯橡胶PUR聚酯型热塑性弹性体天然橡胶NR/异戊IRSBS热塑性弹性体丁晴橡胶NBR/氯丁橡胶CR丁苯橡胶SBR/三元乙丙橡胶EPDM/氟橡胶FKM氯磺化聚乙烯CSM丁基橡胶IIR顺丁橡胶BR/氯醇橡胶CO丙烯酸酯橡胶ACM硅橡胶Q 在快速形变下,橡胶的拉伸强度比慢速形变时高;高温下测试的拉伸强度,远远低与室温下的拉伸强度. 硫化体系的影响 对常用的软质硫化胶而言,欲通过硫化体系提高拉伸强度时,应采用硫磺-促进剂的传统硫化体系,并适当提高硫磺用量.同时促进剂选用

33、噻唑类如M,DM与胍类并用,并适当增加用量. 填充体系的影响 *填料的粒径越小,比表面积越大,表面活性越大,则补强效果越好. *结晶型(如天然橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大,可出现单调下降. *非结晶型(如丁苯橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值,然后下降. *低不饱和度橡胶(如三元乙丙橡胶,丁基橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值后可以保持不变. *对热塑型弹性体而言,填充剂使其拉伸强度降低. *一般情况下,软质橡胶的碳黑用量在40-60份时,硫化胶的拉伸性能比较好. 软化体系的影响 总的来说,加入软化剂会降低硫化橡胶的

34、拉伸强度.但软化剂数量不超过5份时,硫化橡胶的拉伸强度有可能增大.因为含有少量软化剂,可以使碳黑的分散效果好. *芳氢油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响小.用量5-15份 *石蜡油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响大. *对极性的不饱和橡胶(如丁晴橡胶,氯丁橡胶),最好采用芳氢油和酯类软化剂(如DBP,DOP等) 提高硫化胶拉伸强度的其他方法: *橡胶和某些树脂共混;如天然胶,丁苯橡胶和高苯乙烯树脂共混.天然胶和聚乙烯共混.丁晴橡胶和聚氯乙烯共混,乙丙橡胶与聚丙烯共混. *橡胶的化学改性. *填料的改性=使用表面活性

35、剂或偶联剂. 二.撕裂强度 是由于材料中的裂纹或裂口受力时迅速扩大开裂而导致破坏的现象. 各种橡胶(硫化胶)的撕裂强度: 天然橡胶NR聚酯型热塑性弹性体异戊橡胶IR聚氨酯橡胶PUR氯醇橡胶CO丁晴橡胶NBR丁基橡胶IIR氯丁橡胶CR氯磺化聚乙烯CSMSBS热塑性弹性体顺丁橡胶BR丁苯橡胶SBR三元乙丙橡胶EPDM氟橡胶FKM硅橡胶Q丙烯酸酯橡胶ACM 撕裂强度和硫化体系的关系: *撕裂强度和交联密度的关系有一个极大值,一般随交联密度的增加,撕裂强度增大,并出现一个极大值;然后随交联密度的增加,撕裂强度急剧下降.和拉伸强度类似,但最佳撕裂强度的交联密度不拉伸强度达到最佳值的交联密度要低。 *应采

36、用硫磺-促进剂的传统硫化体系,硫磺用量2.0-3.0份. *促进剂选用中等活性,平坦性好的品种,如DM,CZ等;过硫影响大. *在天然橡胶中,如果用有效硫化体系代替普通硫化体系时,撕裂强度明显降低.但过硫影响不大. 撕裂强度和填充体系的关系: *随碳黑粒径的减小,撕裂强度增加。 *结构度低的碳黑对撕裂强度的提高有利。 *在天然橡胶中增加高耐磨碳黑的用量,可以使撕裂强度增大。 *在丁苯橡胶中增加高耐磨碳黑的用量(60-70份),出现最大值,然后逐渐下降。 *一般合成橡胶特别是丁基橡胶,使用碳黑补强时,都可以明显的提高撕裂强度。 *使用各向同性的补强填充剂,如碳黑,白碳黑,白艳华,立德粉和氧化锌等

37、,可以获得较高的撕裂强度。 *而使用各向异性的补强填充剂,如陶土,碳酸镁等则不能获得较高的撕裂强度。 *某些偶联剂改性的无机填料,如用羧化聚丁二烯CPB改性的碳酸钙,氢氧化铝,也能提高丁苯橡胶的撕裂强度。 软化体系对撕裂强度的影响 *通常加入软化剂会使硫化胶的撕裂强度降低,尤其是石蜡油对丁苯橡胶硫化胶的撕裂强度极为不利。而芳氢油则可以保证丁苯橡胶硫化胶的撕裂强度。 *采用石油系软化剂作为丁晴橡胶和氯丁橡胶的软化剂时,应使用芳氢含量高于50-60%的高芳氢油,而不能使用石蜡油。 三.定伸应力和硬度 高定伸应力橡胶:氯丁橡胶,丁晴橡胶,聚氨酯橡胶,结晶型橡胶如天然橡胶等. *不论是纯胶硫化还是填充

38、硫化胶,随交联密度增加,定伸应力和硬度也随之直线上升. 交联密度的大小通常是通过调整硫化体系中的硫化剂,促进剂,助硫化剂,活性剂等配合剂的品种和用量类实现. 有的促进剂只有一种功能,有的促进剂具有多种功能;如秋兰姆类,胍类和次磺酰胺类促进剂的活性很高.其硫化胶的定伸应力也比较高. TMTD具有多种功能,兼有活化,促进及硫化作用,因此TMTD可以有效的提高定伸应力. 在配方设计中,为了保持硫化胶定伸应力恒定不变,需要减少多硫键含量而减少硫磺用量时,应当增加促进剂用量.使硫磺用量和促进剂用量之积(硫磺数量*促进剂用量)保持恒定. 填充体系和定伸应力的关系: *不同类型的填料对硫化胶定伸应力和硬度的

39、影响是不同的:粒径小,活性大的填料,硫化胶定伸应力和硬度提高的幅度较大.随填料用量的增加,定伸应力和硬度也随之增大. *结构性高的碳黑其定伸应力也高. *一般来说,硫化胶的硬度随填料用量的增加而增大. 四.磨耗 耐磨耗性表征硫化胶抵抗摩擦力作用下因表面破坏而使材料损耗的能力. 橡胶的磨耗主要以下三种形式: 1.磨损磨耗 2.疲劳磨耗 3.卷曲磨耗 硫化胶的耐磨耗性与拉伸强度,定伸应力,撕裂强度,疲劳性能以及粘弹性能有关. 定伸应力对不同类型的磨耗有不同的影响.定伸应力高时,摩擦表面上的凸它压入橡胶深度小,抗变形能力强,摩擦系数小,而且橡胶表面刚性大,不易打皱而引起卷曲,对磨损磨耗和卷曲磨耗有利

40、. 提高硫化胶的弹性,耐磨耗性也会随之提高. 胶种的影响: *在通用的二烯类橡胶中,其硫化胶的耐磨耗性如下: *顺丁橡胶溶聚丁苯橡胶乳聚丁苯橡胶天然橡胶异戊橡胶 顺丁橡胶硫化胶的耐磨耗性随顺式链节(1,4结构)含量的增加而提高 *丁苯橡胶弹性,拉伸强度,撕裂强度都不如天然橡胶,但却优于天然橡胶. 丁苯橡胶耐磨耗性随分子量的增加而提高. 丁晴橡胶硫化胶的耐磨耗性比异戊橡胶好,其耐磨性随丙烯晴含量增加而提高.羧基丁晴胶耐磨耗性好. 乙丙橡胶硫化胶的耐磨耗性,和丁苯橡胶相当,随生胶门尼粘度的提高,其耐磨耗性也随之提高. 丁基橡胶硫化胶的耐磨耗性,在20度时和异戊橡胶相近;但当温度升至100度时,耐磨

41、耗性急剧降低.丁基橡胶采用高温混炼时,硫化胶的耐磨耗性显著提高. 以氯磺化聚乙烯为基础的硫化胶,具有较高的耐磨耗性,高温下的耐磨耗也好. 丙烯酸酯橡胶为基础的硫化胶,比丁晴橡胶硫化胶稍微差一点 聚氨酯橡胶是所有橡胶中在常温下耐磨耗性最好的一种.在高温下耐磨耗性急剧下降. 胶种:磨耗量/MG PUR0.5-3.5 NBR44 CR:280 NR146 SBR177 IIR205 硫化体系和耐磨耗性的关系 硫化胶的耐磨耗性随硫化剂用量增大有一个最大值,耐磨耗性达到最佳状态时的最佳硫化程度,随碳黑用量增大及结构性提高而降低. 一般硫磺+促进剂CZ体系的耐磨耗性比较好. 以DTDM+硫磺(低于1.0份)+促进剂NOBS体系硫化胶耐磨耗

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 工作总结

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报