1、 YZ S N ! =n (Thraustochytrium) c z =o 9j7H9 j CNHN 92-02 B j 921 1 9212 31 5j 5j pj B j n 6O 7XdgSgd YZ S Hj N ! =n (Thraustochytrium) c z =o (The screening of strains with protease activity in Thraustochytrium) j CNHN 92-02 B j 921 1 9212 31 5 j B j n Se N ! = (Thraustochytrium) S YPV F =dzadu TJj
2、 Gq 9d&yY.Jk iS % Y Cnd( , HI Y ?/9dI 4,o qGY N ! = =Y c/ (protease) zf j 7G 16H= c/dI, )YZ# N ! = (T. multirudimentale) IY =H0 vY c/ i YJ ?/GpJBV =G 1Y oSf j N ! =nd c z Abstract The obligate marine, biflagellatic Thraustochytrids are saprotrophic or paratrophic on algal and vascular plant material
3、s and play the decomposers in marine foodchain. They also have been isolated from the guts of echinoderms and from sponges, but the nature of associations is unknown. However only rarely have been observed in nature. Most of them has come from laboratory studies of species isolated using pollen grai
4、ns as bait in water and sediment samples. This project is to investigate the protease activity of pure cultured Thraustocytrids. The qualitative analysis reveals 7 species 16 strains with the ability to utilize protein. The quantitative analysis shows two strains of T. multirudimentale with the nota
5、blest of protease activity. They are isolated from the sediment in protected area of Sze-Tsao. This reveals the substrate is one of the factors that effects the scattering of Thraustochytrids. Keywords: Thraustochytrium, protease. Ze _fY * F =1Ij 9,j / oe 7e aiI VF = j Y N ! =ThraustochytridseR Y !=
6、 Chytridsd qu TzdJ q.JYkS789f F =YJSH|YZd odVF =YGede,dfI=eebdD + F =Yk iI 9 HY 123doN ! =d F = Y,f N ! =n ThraustochytriumS YPV F =dza d&yY.Jk du TJj Gq 9 51112i 8 , m F = Z =)F( Yj o B12 thiamine YC 4iRaghukumar H N! =d $ Z =6 E (G Z = Zd8 N != $Y OYJG. Z = bacterivoryP 8i lYJj79e je Y& 10dT, J T.
7、d JYA . p $Yendolithic N ! = 6fS % J Y Cn N ! =d( , H IY ?/9f I c/ (protease) z ,d Z 19991 20027 _(6 e cy, Y V F =_( q CnY N ! = =d94,o =Y c/ d S $ F = Y z_f ge 1. c/ Z 19991 20027 _(6 e cy, Y V F =_S(Y N ! =n (Thraustochytrium)13G 100H q CnY =d*IYf13G 100 N != G CA x Cn ?j CnZ dH cY =7G 16Z f 2. c
8、z A. UGe Cn c zj 9 c Cn (CB) Cng c Cn (PB) CnZ d Cn c zd gjGY =oYc/Gi =Y c z G pH =pf$.d Cnc zd 1B03-1 ze 1C08-7 S0.dI = c zS CnOMf B. K2HPO4 c zj c Cn 0.5e1.0e1.5e2.0 g / 1LY K2HPO4dj K2HPO46B =Y cz (, )dY =Y K2HPO4Bf C. G =Y c zj Cn ? Cn hdY 5 G 9 Hc/ Y N ! =d czY $ YdIz YG1# N ! = (T. multirudime
9、ntale) YH =dI W N ! = (T. motivum)d v N ! = (T. roseum) Y = c zHYf IY N ! =QSY =H c/ d InG D?9 Y ?/ 910d $ Y N ! =Gdj N ! = (T. aggregatum)e W N ! = T. motivum23d SZH = c/ dj4AG ?/Yi $nY v N ! = T. roseum0 =H c/ d(Jc z -d IGY =RHG ?/Y $fv0 c z YG# N ! = T. multirudimentaledG $ -d QH = 2A01-Sa 3A02-S
10、cdkJ, Y)Y 3djY ?/ c/ dIYG c z0-d Y JeJ G0 1112fSGY = c zHd IzY Y ?/ d $YJeBV F =GY1 235.d YJ ?/Gp JBV = 1Y oSf ,e 1. d 1999f(6 F =_f Sf ?f 2. d 2000f c &l V F = N ! =G f 76 YZ K Sf 3. d 2002f, V F =_ (2/2)f 76 YZ K Sf 4. Adair, J. and H. S. Vishniac 1958. Marine fungus requiring vitamin B12. Science
11、 127:147-148. 5. Dix, N. T., and J. Webster. 1995. Fungal Ecology. Publ. Hapman and Hall, London. pp.549. 6. Porter, D. and W. L. Lingle 1992. Endolithic thraustochytrid marine fungi from planted shell fragments. Mycologia 84(3):289-299. 7. Powell, M. J. 1993. Looking at mycology with a janus face:
12、a glimpse at Chytridiomycetes active in the environment. Mycologia 85(1):1-20. 8. Raghukumar, S. 1992. Bacterivory: a novel dual role for throustochytrids in the sea. Marine Biology 113:165-169. 9. Raghukumar, C., S. Nagarkar and S. Raghukumar 1992. Association of thraustochytrids and fungi with liv
13、ing marine algae. Mycol. Res. 96(7):542-546. 10. Sparrow, F. W. 1960. Aquatic Phycomycetes, 2nded. The University of Michigan Press, Ann Arbot. 11. Suzuki, S. 1961. The seasonal changes of aquatic fungi in the lake bottom of Lake Nakanuma. Botan. Mag. (Tokyo) 74:30-33. 12. Ulken, A. 1980. On some ch
14、ytrids found in estuarine habitats. Botanica Marina 23:343-352. (S ) I4 N ! =G n G , 1999 ,2000 , 2002 Thraustochytrium proliferum multirudimentale motivum aureum rossi kinnei kerguelensis globosum pachydermum roseum aggregatum striatum visurgensis Sp. Schizochytrium aggregatum minutum mangrovei oct
15、osporum limacinum Sp. Ulkenia radiata minuta 3n 202G 12G 13G 18G WjjD-G Z c Cn ? CAY N ! =G = G = G = 2B03-1 4A03-2 T. motivum 2B09-1 1C08-7 1C08-2 2B08-3 T. aureum 2B08-2 1C09-2 3A02-Sc 4A09-1 T. multirudimentale 2A01-Sa 4A09-3 T. pachyderma 4A01-1 T. roseum 302M-1 T. aggregatum 1B03-2 T. globosum
16、3A02-1 g Cn c Cn (CB)g c Cn (PB)Z Y c z CB PB G = pH ()z pH ()z 302M-1 9 (21) 0.260 9 (14) 1.972 4A03-2 9 (21) 0.365 9 (14) 0.755 T. roseum 1C08-7 10 (21) 0.515 9 (14) 0.324 1B03-1 10 (21) 0.075 6 (14) 0.076 T. motivum 2B09-1 10 (21) 0.365 9 (14) 0.020 T. globosum 3A02-1 6 (21) 0.785 10 (14) 0.075 T
17、. multirudimentale 3A02-Sc 9 (21) 0.490 10 (14) 3.303 T. pachyderma 4A01-1 10 (21) 0.430 6 (14) 0.605 , K2HPO4 c z G = K2HPO4 (g/L) CnpH z T. motivum 2B03-1 0.5 7 10 0.145 1C08-2 0.5 7 10 0.175 T. aureum 2B08-2 1.5 7 6 0.120 1C09-2 1.5 7 6 0.345 4A09-1 0.5 7 9 0.140 T. roseum 4A09-3 2.0 7 6 0.525 N ! = =Y c z0 G = CnpH z T. motivum 2B09-1 14 9 2.900 4A03-2 14 9 0.740 1C08-7 14 9 0.324 2B08-3 14 9 0.824 T. roseum 302M-1 14 9 2.009 2A01-Sa 14 10 5.090 T. multirudimentale 3A02-Sc 14 10 3.303 T. pachyderma 4A01-1 14 6 0.605 T. aggregatum 1B03-2 14 7 1.745