1、 S S E S 2004, 34(6): 629645 629 SCIENCE IN CHINA Ser. E Information Sciences = d M1f /*S ( 2YvMY , 610031) K1 h h“ s (CDMA)“d , 1 !9BF 1M1f (ACF) M1f (CCF) B7, 4 qv CDMA “d1 , y “d ? | % a q , “d ? . y = “Kvd 1M1HKvd M11 “/ , t/1X Sarwate aWelch Levenshtein . 1oM d M1f = Levenshtein Sarwate Welch S
2、idelnikov (DS) s(CDMA) “d, PM z , ? Z$s B . CDMA“d , Es1, y CDMA“d ? | % a q, “d ?1,2. h“ , 1 !9BF 1M1f (ACF) ,M1f (CCF)2,3 . , B , L= V ?y X “. B , s CDMA“d P “ , L, “ M, Kvd ( ) 1M1H aKvd ( ) M1 csBt K . st W 1“, B Y1o75 . * 1979 M , Sarwate4y 1L , M, a c . ? , P Sarwate . 2003-09-10 l, 2004-04-28
3、 l * SE1 SP S( | 60218001)aSE1 S( | 69931050)aY F / SE L iaSE1 SSE S “ * E-mail: 630 S S E S 34 SCIENCE IN CHINA Ser. E Information Sciences = a= c+ y f , 1974 M , Welch5 = L, M . , Sidelnikov6,7 Massey894 BtM1T . 1999 M , = “ , Levenshtein9 o p / , V7 d M1f 1L, M . Levenshtein1 Welch . 7 , Levensht
4、ein V$B . 1 “ = “d M1f , 1X T . YV P ZE , ? y M 1 u (LCZ) ,M 1u (ZCZ) “ 10. LCZ/ZCZ Fan11, Tang12, Suehiro13 Li14y , i$ . LCZ/ZCZ / /BMY“d/ 14,15. , |1) = “d M1f . sF / , B , M 1| l ; = , i) = B ; K , Bt: , iX 1= “d M1f 1 . 1 ! M n5 A1 |l . i L x, 7 xV Ul xK v , xV Uv xK l . ! E=1,1 3 “ , x=(x1, x2,
5、null ,xL)EL$ E L . i x=(x1, x2,null ,xL)y=(y1, y2,null , yL), d M1f A(x, y; l)l 1(, ;) , 0, 1, , 1,LliiliAx yl xy l L+=null I n H . “ CEL, M=|C|V U C c “ . CKvd 1M1H a(C)Kvd M1 c(C)sYl / : () max| ,;| : , 0 1,() max |(,;)| : , , , 0 1.ac CA(xl)xClL xylxyxylL=0, 7 W(x)=T i(x0)| i=0,1,null , L1, ()= (
6、)xAWA Wx, 112001(,) | (0), (0) |LLsts txAyBs tF AB T x T y wwAB=. 19! CEL i “ , 1,0(,) ( | |)Ls tstF CC L s t ww= . 2 ! CEL i “ , M=|C|0, 5 632 S S E S 34 SCIENCE IN CHINA Ser. E Information Sciences 2 1122200(,) 1 1 .LL2s sa cssLFCC w wMM M =+ + 1122,0 0( , ) | ( 0), ( 0) | | ( 0), ( 0) |LLst sss t
7、sxy C st x C ssM FCC T x T y ww T x T x ww= = 12;, 0| ( 0), ( 0) | Lsts txC ststTx Tx ww=+12;, , 0|(0),(0)|Lsts txyxyCstTx Ty ww=+1, (12) 2211(, ) (, ) 1,acPLM DLM+ 22223,3( 1)LM L MLM+ (13) 1223( 1)(, ) , 23LPLMLM L M=+634 S S E S 34 SCIENCE IN CHINA Ser. E Information Sciences 1223( 1)(, )23LMDLML
8、M L M=+. ? Sarwate (2) / T (14) 22(, ) (, ) 1,acSLM TLM+ 222( 1) 2 1(, ) , (, )(1)LLSLM TLMM=. M3 L3, S(L, M)P1(L, M) T(L, M)D1(L, M). yN , 4 A (12)1 Sarwate (14) . B , T L H , M , * Vr T 221(, ) 22,(, ) 3(1)SLM L MPLMLM = 221(, ) 2 12(, ) 3(1)TLM L L MDLM LLM = v 4/3. , V Sarwate (12) 4/3 . i , (11
9、) Levenshtein (5) B , (13) n5 Levenshtein9. M4, L2 H , (13)1 Welch (4) . 3 7 C M E L F“ . T M3, L2, * (15) 2222(, ) (, ) 1,acPLM DLM+ 32,31M LML (16) 223(, ) ,(3 2 )LMPLMM ML=23( 1)(, )(3 2 )MDLMM ML=. ! k = 3/M L 1, 5 k= 3/M L 1+L 1, 1P2(L,M) T(L,M)D2(L,M) M7, L6 , A (15)1 Sarwate (2)z . T L H , M=
10、o(L2) , * 2(, ) 2( 1) 3 2,(, ) 13SLM L M MPLM MLM=2(, ) 2 1 3 2(, ) 13TLM L M MDLM ML=v 2. , Sarwate (2) (15) 2 . 232 32,31 3MMLLML MVn (16)1 Levenshtein (6)z . 4 ! C M E L F“ . T M L /3+1, L 2, * (17) 2233(, ) (, ) 1,acPLM DLM+ 132(4 1)(, ) ,(, )LPLM RLM= 133( 1)4(, ) ,(, )LMDLMRLM= 21 2(, ) ( 4 3
11、)4 3 ( 3) 2 2 (5 3 )LLR L M M LM L L M M LM L= + + + + . T _ w = (w0, w1,wL1), 636 S S E S 34 SCIENCE IN CHINA Ser. E Information Sciences 12 , 0,2 , 1 1.LssswsL+=5 1120121334LLssw ,=+11121 4 1 2 1(, ) 2( 3) (3 5)334 3 2 3 2LLQkw k L LL =+ + + . 1 122211(34Lac M +1) 112121 4 1 2 12( 3) (3 5) ,334 3
12、2 3 2LLLM L M L M L M + + + L12 1224 1 3( 1)4 (, )LLac M RL M+ . y L/3+1L2/(3L4), 221, 3 40, (,)334LLMLMLMRLL+ 0M. 8 . 4, V 1113(, ) 1 4 (, ),(, )41(1)4LLLSLM L RLMPLM LLM= 13(, ) 2 1 (, ),(, ) 3(1)4LTLM L RLMDLM LLM=2121(, ) 3 4(, ) (, ),(1)(1)4LRLM LM L MRLM R LMLMLM=+ 212116( 3) 2(3 5 )(, ) , (,
13、)(1)2 (1)4LLLM LMLMRLM R LMLM LM=+. ! M = kL, k1/3 B . 7 L , 121(, ) (3 1) 4 3 1(, ) (, ) ,1(1)4LRLM k L k kRLM R LMkL kLM =+ 6 : = d M1f / 637 33(, ) 3 1 (, ) 2 3 1, (, ) (, ) 3SLM k TLM kPLM k DLM k. N Vn , (17)1 Sarwate (2)z . i O k v H , S(L, M)/P3(L, M)l3, T(L, M)/D3(L, M)l 2. G 1, YV9 =Q Q t+
14、 yHq/Kl , 9 ?BtT . 1/ . 3 7 a1, 0yN (21)1 Levenshteinz . C T (20) (21)P HVr T e . i M L, ML2, 7 00, * (2i+1) =+ 24(, ) 2 1 / 8 1 1 1 121 1(, ) 1 1/ 18TLM L L L MDLM M L M LLM =+ v 2 . yN , 6ML2 M L, Sarwate (2)v (26) 2 . 6ML2 M L, ( )22 2 2 2 222 22(32 3 )( ) 2 20128 (2 ) 2LM L MLMLM L M ML M , (27)
15、1 Levenshtein (7)z . 3 Xy = Bd 1M1M1f / . i O t/1X Sarwate , Welch Levenshtein . 3Hq H , 4 Kl 1/2r. 5L!/ , 1, 2120riiw=22211 1 sin ()sin(1)11,(acLrrLrMMr M M r+ +2(28) 221sin ()sin(122 ()Lrr LrMr M r 12 + . (29) (28) (29) TsY1 (20) (21) Te . , (20) (21)sY1 (28) (29) . K , V 1 1= Bd M1f /X T . YV9 1
16、, A 1C . 644 S S E S 34 SCIENCE IN CHINA Ser. E Information Sciences V 1 = X T M ! 22233(1)(1)333 2ack kM2MLL kLM kMkM+ + 0kL12222 223( 1) 3 ( 1)123 23acLLMML L M ML L M+ + 0kL1 2233(1)1(3 2 ) (3 2 )acLM MMML MML+22L, 3M-1 -1222(4 1) 3( 1)41(, ) (, )LLacMRLM RLM+ 2L, L/3+1M22 2 2 2 2222 2221(323)( )
17、(2 2 )128 (2 ) 21 1 8acLM L MLMMLM L M ML ML LM M + ML2222333 23( 1)LML kLMkMkMkM M+ + 0kL1222233( 1)L MLMLM+ 0kL1 223231M LML2L,3MPeng-Fan 200422 2 2 2 2222 22(32 3 )( ) (2 2 )1128 (2 ) 28LM L MLMLM L M ML MLLM ML22223 33( 1)kLM L Mk MkM + 1kL 2323M LM 2L,3M Levenshtein 199928L LM 5ML2Sarwate 19792
18、22( 1) 2 11(1)acLLML L+ Welch 197422( 1)21M LML M I D 1 Fan P Z, Darnell M. Sequence Design for Communications Applications. New York: Wiley, 1996 2 Pursley M B, Sarwate D V. Performance evaluation for phase-coded spread spectrum multipleaccess communications-Part I: System analysis. IEEE Trans Comm
19、un, Aug. 1977, Vol. COM-25: 795799 3 Sarwate D V, Pursley M B. Crosscorrelation properties of pseudonoise and related sequences. In: Proceedings of The IEEE, Vol.68, No. 5, May 1980. 593619 4 Sarwate D V. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans Inform Theory, 6 : = d
20、M1f / 645 1979, 25: 720724 5 Welch L R. Lower bounds on the maximum crosscorrelation of signals. IEEE Trans Inform Theory, 1974, Vol. IT-20: 397399 6 Sidelnikov V M. Cross correlation of sequences. Probl Kybem, 1971, 24: 1542 7 Sidelnikov V M. On mutual correlation of sequences. Soviet Math Doklady
21、, 1971, 12: 197201 8 Massey J L. On Welchs Bound for the crosscorrelation of a sequence set. In: Proceedings of EEE ISIT90, Sept. 1990. 385385 9 Levenshtein V I. New lower bounds on aperiodic crosscorrelation of binary codes. IEEE Trans Inform Theory, 1999, 45(1): 284288DOI 10 Peng D Y, Fan P Z. Bou
22、nds on Aperiodic auto- and cross-correlations of binary sequences with low or zero correlation zone. In: PDCAT2003 Proceedings, IEEE Press, ISBN:0-7803-7840-7, August, 2003. 882886 11 Fan P Z, Hao L. Generalized orthogonal sequences and their applications in synchronous CDMA systems. IEICE Trans. Fu
23、ndamentals, Nov, 2000, Vol. E83-A(11): 116 12 Tang X H, Fan P Z. A class of pseudonoise sequences over GF(P) with low correlation zone. IEEE Trans on Information Theory, May, 2001, 47(4): 10331039 13 Suehiro N. A signal design without co-channel interference for approximately synchronized CDMA syste
24、m. IEEE J Sel Areas Commun, June, 1994, Vol.12: 837841DOI 14 Li D B. The perspective of large area synchronous CDMA technology for the fourth-generation mobile radio. IEEE Communication Magazine, March, 2003, 114118 15 Li W C Y. The most spectrum-efficient duplexing system: CDD. IEEE Communication Magazine, March, 2002, 163166