收藏 分享(赏)

2016年人教版七年级数学上册全册教案.doc

上传人:梦中客 文档编号:1712187 上传时间:2018-08-19 格式:DOC 页数:158 大小:6.33MB
下载 相关 举报
2016年人教版七年级数学上册全册教案.doc_第1页
第1页 / 共158页
2016年人教版七年级数学上册全册教案.doc_第2页
第2页 / 共158页
2016年人教版七年级数学上册全册教案.doc_第3页
第3页 / 共158页
2016年人教版七年级数学上册全册教案.doc_第4页
第4页 / 共158页
2016年人教版七年级数学上册全册教案.doc_第5页
第5页 / 共158页
点击查看更多>>
资源描述

1、- 1 -2015-2016 学年七年级上册数学教案(双语班)第一章 有理数单元教学内容1本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念2通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联

2、系,从而体现出以下 4 个方面的作用:(1)数轴能反映出数形之间的对应关系(2)数轴能反映数的性质(3)数轴能解释数的某些概念,如相反数、绝对值、近似数(4)数轴可使有理数大小的比较形象化3对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分4正确理解绝对值的概念是难点 根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值(2)有理数的绝对值是一个非负数,即最小的绝对值是零(3)两个互为相反数的绝对值相等,即a=-a(4)任何有理数都不大于它

3、的绝对值,即aa,a-a(5)若a=b,则 a=b,或 a=-b 或 a=b=0三维目标1知识与技能- 2 -(1)了解正数、负数的实际意义,会判断一个数是正数还是负数(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值(4)会利用数轴和绝对值比较有理数的大小2过程与方法经过探索有理数运算法则和运算律的过程,体会“类比” 、 “转化” 、 “数形结合”等数学方法3情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言重、难点与关键1重点:正确理解有理数、相

4、反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值2难点:准确理解负数、绝对值等概念3关键:正确理解负数的意义和绝对值的意义课时划分11 正数和负数 2 课时12 有理数 5 课时13 有理数的加减法 4 课时14 有理数的乘除法 5 课时15 有理数的乘方 4 课时第一章有理数(复习) 2 课时11 正数和负数第一课时 三维目标一知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量二过程与方法- 3 -借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性三情感态度与价值观培养学生积极思考,合作交流的意识和能力教学重

5、、难点与关键1重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法2难点:正确理解负数的概念3关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数 1,2,3,;为了表示“没有物体” 、 “空位”引进了数“0” ,测量和分配有时不能得到整数的结果,为此产生了分数和小数在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第 2页至第 3 页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下 3 摄氏度,净输 2 球,减少 2

6、.7%五、讲授新课(1) 、像-3,-2,-2.7%这样的数(即在以前学过的 0 以外的数前面加上负号“”的数)叫做负数而 3,2,+2.7%在问题中分别表示零上 3 摄氏度,净胜 2 球,增长 2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的 0以外的数)叫做正数,有时在正数前面也加上“” (正)号,例如,+3,+2,+0.5,+ 1,就是 3,2,0.5, 13,一个数前面的“” 、 “”号叫做它的符号,这种符号叫做性质符号(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数(3)、数 0 既不是正数,也不是负数,但 0 是正数与负数的分界数(

7、4) 、0 可以表示没有,还可以表示一个确定的量,如今天气温是 0,是指一个确定的温度;海拔 0 表示海平面的平均高度用正负数表示具有相反意义的量(5) 、 把 0 以外的数分为正数和负数,起源于表示两种相反意义的量正数和负数在许多方面被广泛地应用在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度例如:珠穆朗玛峰的- 4 -海拔高度为 8844m,吐鲁番盆地的海拔高度为-155m记录账目时,通常用正数表示收入款额,负数表示支出款额(6) 、 请学生解释课本中图 11-2,图 11-3 中的正数和负数的含义(7) 、 你能再

8、举一些用正负数表示数量的实际例子吗?(8) 、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量六、巩固练习课本第 3 页,练习 1、2、3、4 题七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数正数就是我们过去学过的数(除 0 外) ,在正数前放上“”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数” ,在一个数前面添上负号,它表示的是原数意义相反的数如果原数是一个负数,那么前面放上“”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也

9、不是负数八、作业布置1课本第 5 页习题 11 复习巩固第 1、2、3 题九、板书设计11 正数和负数第一课时 1、像-3,-2,-2.7%这样的数(即在以前学过的 0 以外的数前面加上负号“”的数)叫做负数而 3,2,+2.7%在问题中分别表示零上 3 摄氏度,净胜 2 球,增长 2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的 0以外的数)叫做正数,有时在正数前面也加上“” (正)号,例如,+3,+2,+0.5,+ 1,就是 3,2,0.5, 13,一个数前面的“” 、 “”号叫做它的符号,这种符号叫做性质符号2、随堂练习。3、小结。4、课后作业。十、课后反思- 5 -1.

10、1 正数和负数第二课时 三维目标一知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义二过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征三情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣教学重、难点与关键1重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量2难点:正数、负数概念的综合运用3关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.教学过程四、复习提问课堂引入1什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?2如果用正数表示盈利 5 万

11、元,那么-8 千元表示什么?五、新授例 1一个月内,小明体重增加 2kg,小华体重减少 1kg,小强体重无变化,写出他们这个月的体重增长值22001 年下列国家的商品进出口总额比上年的变化情况是:美国减少 6.4%,德国增长 1.3%,法国减少 2.4%,英国减少 3.5%,意大利增长 0.2%,中国增长 7.5%写出这些国家 2001 年商品进出口总额的增长率分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数“负”与“正”- 6 -是相对的,增长-1,就是减少 1;增长-6.4%就是减少 6.4%,那么什么情况下增长率是 0?当与上年持平,既不增又不减时增长率是 0解:1这个月小明

12、体重增长 2kg,小华体重增长-1kg,小强体重增长 0kg2六个国家 2001 年商品进出口总额的增长率分别为:美国-6.4%,德国 1.3%,法国-2.4%,英国-3.5%,意大利 0.2%,中国 7.5%归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2 千元,就是亏本 2 千元;前进-3 米,就是后退 3 米;浪费-14 元,就是节约 14 元;向南走-7 米,就是向北走 7 米,因此盈利 2 千元与盈利-2 千元具有相反的意义六、巩固练习1课本第 5 页的第 8 题点拨:增长-3.4%,就是减少 3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国

13、、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多2补充练习若向西走 10 米,记作-10 米,如果一个人从 A 地先走 12 米,再走-15 米,你能判断此人这时在何处吗?解:向西走 10 米,记作-10 米,那么这人走 12 米,则表示向东走 12 米,再走-15 米,表示向西走了 15 米,即这个人从 A 地先向东走 12 米,接着再向西走 15 米,此人这时应该在A 地的西方 3 米处七、课堂小结通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量八、作业布置1课本第 5 页习题 11 第 4、5、6、7 题九、板书设计九、板书

14、设计11 正数和负数第二课时 1、复习巩固,例题讲解。2、随堂练习。- 7 -3、小结。4、课后作业。十、课后反思12 有理数第一课时三维目标一、 知识与能力理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零二、过程与方法经历对有理数进行分类的探索过程,初步感受分类讨论的思想三、情感态度与价值观通过对有理数的学习,体会到数学与现实世界的紧密联系教学重难点及突破在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引

15、起足够的重视关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开教学过程四、课堂引入1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?2举例说明现实中具有相反意义的量3如果由 A 地向南走 3 千米用 3 千米表示,那么-5 千米表示什么意义?4举两个例子说明+5 与-5 的区别5 数 0 表示的意义是什么?二、自主探究在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下- 8 -几类: 正整数,如 1,2,3,;零:0;负整数,如-1,-2,-3,;正

16、分数,如 13, 27, 4.5(即 4 12) ;负分数,如- ,-2 ,-0.3(即- 30) ,- 5正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数回答下列各题:(1)0 是不是整数?0 是不是有理数?(2)-5 是不是整数?-5 是不是有理数?(3)-0.3 是不是负分数?-0.3 是不是有理数?2你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类把一些数放在一起,就组成一个数的集合,简称数集所有的有理数组成的数集叫做有理数集类似的,所有整数组成的数集叫做整

17、数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等五、题例精解例 把下列各数填入表示它所在的数集的圈子里:-18, 27,3.1416,0,2001,-35, 0.142857,95%六、随堂练习- 9 -一、判断1自然数是整数 ( ) 2有理数包括正数和负数 ( )3有理数只有正数和负数 ( ) 4零是自然数 ( )5正整数包括零和自然数 ( ) 6正整数是自然数 ( )7任何分数都是有理数 ( ) 8没有最大的有理数 ( )9有最小的有理数 ( )七、课堂小结:(提问式)1有理数按正、负数,应怎样分类?2有理数按整数、分数,应怎样分类?3分类的原则是什么?八、课后作

18、业:1课本第 14 页习题 12 第 1 题九、板书设计:12 有理数第一课时1、复习巩固,例题讲解。2、随堂练习。3、小结。4、课后作业。十、课后反思1.2.2 数轴第二课时三维目标一知识与技能(1)掌握数轴三要素,能正确地画出数轴(2)能准备地将已知数在数轴上表示出来,能说出数轴上已知点所表示的数- 10 -二、过程与方法经历从实际问题中抽象出数学问题的过程,初步学会数学的类比方法和数形结合的思想方法三、情感态度与价值观体会知识源于生活,并应用于生活教学重、难点与关键1重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数2难点:正确理解有理数和数轴上的点的对应关系3关键:掌握

19、数形结合的数学方法.教学过程四、复习提问、新课引入1有理数包括哪些数?有理数是怎样分类的?2回顾小学数学是如何利用数轴表示正数和零的?五、新授引入负数后,又如何利用数轴表示有理数呢?让我们先看一个问题在一条东西走向的马路上,有一个汽车站,汽车站东 3m 和 7.5m 处分别有一棵柳树和一棵杨树,汽车站西 3m 和 4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境1画一条直线表示马路,从左到右表示从西到东的方向2因为柳树、杨树都在汽车站的东面,即在汽车站的右边槐树、电线杆在汽车站的西面,即在汽车站的左边,它们都相对汽车站而言,所以在直线上任取一个点 O 表示汽车站的位置,规定 1 个单

20、位规定 (线段 OA 的长代表 1m 长) (如下图)3分别标出柳树、杨树、槐树、电线杆的位置在点 O 右边,与 O 距离 3 个单位长度的点 B 表示柳树的位置:点 O 右边,与 O点距离7.5 个单位长度的点 C 表示杨树的位置;点 O 左边,与点 O 距离 3 个单位长度的点 D表示槐树位置;点 O 的左边,与点 O 距离 4.8 个单位长度的点 E 表示电线杆的位置问:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系?(方向、距离)为了使表达更清楚、更简洁,我们把点 O左右两边的数分别用正数和正数表示符号表示方向,点 O 的左边表示负数,点 O 的右边表示正数- 11 -这样就可

21、以简明地表示这些树、电线杆与汽车站的相对位置关系了这里,-4.8 中的负号“”表示汽车站(点 O)的左边,4.8 表示与点 O的距离为 4.8个单位长度说明:以上分析,教师应边讲边画,分步进行观察后回答:(课本第 11 页)温度计可以看作表示正数、0 和负数的直线吗?它和课本图 12-1 有什么共同点,有什么不同点?答:可以,课本图 12-2 也是把正数、o 和负数用一条直线上的点表示出来,它是向上方向为正(即 0 的上方表示正数,0 的下方表示负数) ,只要把温度计水平放下就与课本图12-1 相同了一般地,在数学中人们用画图的方式把数“直观化” ,通常用一条直线上的点表示数,这条直线叫做数轴

22、,它满足以下要求:(1)在直线上任取一个点表示数 0,这个点叫做原点,记为 0;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3,;从原点向左,用类似方法依次表示-1,-2,-3,像这样规定了原点、正方向和单位长度的直线叫做数轴原点、正方向和单位长度称为数轴的三要素,缺一不可单位长度的大小可以根据不同的需要选择任何一个有理数都可以用数轴上的点表示,例如 3.5,数轴上从原点向右 3.5 个单位长度的点表示 3.5,又如要表示-2 13,从原点向左 213个单位长度的点就表

23、示-2 13,如下图归纳:先由学生填空,然后教师加以讲评六、巩固练习1请同学们在练习本上画一条数轴2下面的各图是不是数轴?为什么?- 12 -3在数轴上画出表示下列各数的点(1)4,-2,-4,1 13,0,-2(2)-100,100,-250,-400,0,2.54指出数轴上 A、B、C、D、E 各点分别表示什么数?5在数轴上与表示-1 的点的距离为 2 个单位长度的点有几个?请你在数轴上把它们画出来,它们分别表示什么数?学生独立完成后,老师讲解,给出正确的答案七、课堂小结数轴是非常重点的数学工具,它的出现对数学的发展起了重要作用,它揭示了数和形之间的内在联系,很多数学问题都可以以它为基础,

24、借助图直观地表示,为研究问题提供了新方法八、作业布置1课本第 10 页练习 1、2 题,第 14 页习题 12 的第 2 题九、板书设计:1.2.2 数轴第二课时1、像这样规定了原点、正方向和单位长度的直线叫做数轴原点、正方向和单位长度称为数轴的三要素,缺一不可单位长度的大小可以根据不同的需要选择任何一个有理数都可以用数轴上的点表示,例如 3.5,数轴上从原点向右 3.5 个单位长度的点表示 3.5,又如要表示-2 13,从原点向左 213个单位长度的点就表示-2 13,如下图2、随堂练习。3、小结。4、课后作业。十、课后反思- 13 -1.2.3 相反数第三课时三维目标一知识与技能(1)借助

25、数轴了解相反数的概念,知道两个互为相反数的位置关系(2)给出一个数,能求出它的相反数二、过程与方法借助数轴,通过观察特例,总结出相反数的概念从数和形两个侧面理解相反数三、情感态度与价值观鼓励学生积极进行归纳、比较交流等活动教学 重、难点与关键1重点:理解相反数的意义,会求一个数的相反数2难点:理解和掌握双重符合的简化3关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,理解相反数教学过程四、复习提问课堂引入在数轴上,画出表示 6,-6,2 1,-2 2,4 13,-4 各数的点五、新授请同学们观察后回答:1上述中 6 和-6;2 1和-2 2,4 13和-4 每对数有什么特点?2每对数在

26、数轴上所表示的点有什么特点?3再观察课本第 8 页的图 12-1 中点 D 和点 B,它们的位置关系如何?它们各表示的数有什么特点?概括:(1)每一对数,只有符号不同(2)在数轴上表示每一对数的两个点分别在原点的两边,并且离开原点的距离相等(3)点 D 和点 B 分别位于原点的两边,且与原点的距离相等,它们分别表示-3和 3思考:数轴上与原点的距离是 2 的点有几个?这些点表示的数是什么?与原点的距离是- 14 -5 的点呢?归纳:一般地,设 a 是一个正数,数轴上与原点的距离是 a 的点有两个,它们分别在原点左右,表示-a 和 a,那么称这两个点关于原点对称,如下图:-2 2-a a0像这样

27、只有符号不同的两个数叫做互为相反数,例如 6 和-6,2 1和-2 2,都是互为相反数,也就是说 6 的相反数是-6,-2 12的相反数是 2 1一般地,a 和-a 互为相反数,特别地,0 的相反数仍是 0问:数轴上表示相反数的两个点和原点有什么关系?答:数轴上表示相反数的两个点是关于原点对称,是在原点的两旁(除 0外) ,并且与原点的距离相等注意相反数与倒数的区别,若两个数只有符号不同,那么这两个数叫做互为相反数;若两个数的乘积等于 1,则这两个数叫互为倒数任何有理数都有相反数,零的相反数是零,而零没有倒数例 1:分别写出下列各数的相反数5,-7,-3 2,+11.2,0解:5 的相反数是-

28、5;-7 的相反数是 7;-3 的相反数是 3;+11.2 的相反数是-11.2;0的相反数是 0强调书写格式,防止出现如“5=-5”的错误容易看出,在正数前面添上“”号,就得到这个正数的相反数在任意一个数的前面添上“”号,新的数就表示原数的相反数例如:-(+5)=-5,-(-7)=7,-(-3 12)=3 ,-(+11.2)=-11.2,-0=0我们知道一个正数,前面的“”号可以写也可以不写,所以在一个数的前面添上“”号,表示这个数没有变化,还是它本身例如:+(-4)=-4,+(+12)=12,+0=0六、课堂练习1写出下列各数的相反数+2 3,-2.5 ,0, 43- 15 -2化简下列各

29、数-(-30) ,-(+3) ,-(-38.2) ,+(-5) ,+(+ 27) 3指出下列各对数,哪些是相等的数?哪些是互为相反数?+(-3)与-3,-(+3)与 3,-(-7 12)与-7 4如果 a=-a,那么表示 a 的点在数轴上的什么位置?5你会化简下列各数吗?试试看 (本题可根据学生实际情况选用)-+(-2),-(-6)提示:因为任意数 a 是-a 的相反数,所以表示 a 的点在数轴上与表示-a的点关系原点对称,这两个点分别在原点左、右两边且与原点距离相等七、课堂小结本节课我们学习了相反数的概念、相反数的求法和双重符号的简化理解相反数的意义,相反数总是一正一反成对出现(零除外) ,

30、从数轴上看,表示互为相反数的两个点,分别在原点的两边,且到原点距离相等要表示一个数的相反数,只要在这个数前面添“”号,-a表示 a 的相反数,当 a 是正数时,-a 表示一个负数;当 a 是负数时,则-a 表示正数此外我们还应该注意相反数和倒数的区别八、作业布置1课本第 11 页练习 1、2、3 题,第 15 页习题 12 第 3 题九、板书设计:1.2.3 相反数第三课时1、一般地,设 a 是一个正数,数轴上与原点的距离是 a 的点有两个,它们分别在原点左右,表示-a 和 a,那么称这两个点关于原点对称,如下图:-2 2-a a0像这样只有符号不同的两个数叫做互为相反数,例如 6 和-6,2

31、 1和-2 2,都是互为相反数,也就是说 6 的相反数是-6,-2 12的相反数是 2 12、随堂练习。3、小结。- 16 -4、课后作业。十、课后反思1.2.4 绝对值第四课时三维目标一、知识与技能(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用二、过程与方法通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力三、情感态度与价值观培养学生积极参与探索活动,体会数形结合的方法教学重、难点与关键1重点:正确理解绝对值的概念,能求一个数的绝对值2难点:正确理解绝对值的几何意义和代数意义3关键:借助数

32、轴理解绝对值的几何意义,根据绝对值定义和相反数的概念,理解绝对值的代数意义四、教学过程一、复习提问,新课引入1什么叫互为相反数?2在数轴上表示互为相反数的两个点和原点的位置关系怎样?五、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向1观察课本第 11 页图 12-5,回答:- 17 -(1)两辆汽车行驶的路线相同吗?(2)它们行驶路程的远近相同吗? 这两辆车行驶的路线不同(方向相反) ,但行驶的路程的远近相同,都是 10km课本图 12-5 中表示-10 的点 B 和表示 10 的点 A 离开原点的距离都是 10,我们就把这

33、个距离 10 叫做数-10、10 的绝对值一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作a这里的数 a 可以是正数、负数和 0例如上述的 10 和-10 的绝对值记作10=10,-10=10,同样在数轴上表示+6 和-6的两个点,离开原点的距离都是 6,即 6 和-6 的绝对值都是 6,记作6=6,-6=6数轴上表示数 0 的点与原点的距离是 0,所以0=02试一试:(1)+2=_, 15=_,+10.6=_(2)0=_(3)-12=_,-20.8=_,-32 17=_3你能从上面解答中发现什么规律吗?学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而

34、得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数我们用 a 表示任意一个有理数,上述式子可以表示为:当 a 是正数时,a=_;当 a 是负数时,a=_;当 a=0 时,a=_以上先让学生填空,然后让学生给 a取一些具体数值检验所填写的结果是否正确教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?(3)绝对值等于 2 的数有几个?它们是什么?归纳:- 18 -任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或 0,不可能是负数,即对任意有理数 a

35、,总有a0两个互为相反数的绝对值相等,即a=-a因为 0 的绝对值是 0,而 0 的相反数是它本身 0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零六、巩固练习1课本第 12 页练习 1、2 题第 1 题强调书写格式,防止出现“-8=8”的错误第 2 题(1)错,如 3 与-2 的符号相反,但它们不是互为相反数,应改为“只有大小相等符号相反的数是互为相反数” (2)正确 (3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远 ”(4)正确七、课堂小结理解绝对值的几何意义和代数意义从几何意义可知,一个数的绝对值是表示该数的点与原点的距

36、离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5 就是由“”号和它的绝对值 5 两部分组成八、作业布置1课本第 15 页习题 12 第 4、7、10 题九、板书设计:1.2.4 绝对值第四课时任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或 0,不可能是负数,即对任意有理数 a,总有a0两个互为相反数的绝对值相等,即a=-a因为 0 的绝对值是 0,而 0 的相反数是它本身 0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零2、随堂练习。

37、3、小结。4、课后作业。- 19 -十、课后反思1.2.4 绝对值第五课时三维目标一、知识与技能掌握有理数的大小比较的两种方法利用数轴和绝对值二、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力三、情感态度与价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值教学 重、难点与关键1重点:会利用绝对值比较有理数的大小2难点:两个负数的大小比较3关键:正确理解绝对值的概念四、教学过程一、复习提问,引入新课用“” 、 “-5同样-1-3例 1:比较下列各对数的大小:(1)-(-1)和-(+2) ; (2)- 81和- 37; (

38、3)-(-0.3)和- 13解:(1)先化简,-(-1)=1,-(+2)=-2,正数大于负数,1-2即 -(-1)-(+2) (2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小- 81= ,- 37= = 921因为 2- (3)先化简,-(-0.3)=0.3,- 13= =.0,0.30,ba,比较 a,-a,b,-b 的大小解:方法一,可通过数轴来比较大小,先在数轴上找出 a,-a,b,-b的大致位置,再比较由 a0,ba,可知表示 b 的点离开原点的距离更远,即它应在表示 a 的点的左边,然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图-b

39、-a a0b根据数轴上,较左边的点所表示的数较小,可得:b”或“”号填空1-1a0ba_b; a_b; -a_-b; a_ 1b七、全课小结(提问式)比较有理数的大小有哪几种方法?有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行- 22 -在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数八、作业布置1课本第 15 页习题 12 第 5、6、8 题九、板书设计:1.2.4 绝对值第五课时1、表示正数的点都在原点的右边;表

40、示负数的点都在原点左边因此有正数大小 0,0 大于负数,正数大于负数2、随堂练习。3、小结。4、课后作业。十、课后反思1.3.1 有理数的加法(1)第一课时三维目标一、知识与技能理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算二、过程与方法引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力三、情感态度与价值观培养学生主动探索的良好学习习惯教学重、难点与关键1重点:掌握有理数加法法则,会进行有理数的加法运算2难点:异号两数相加的法则3关键:培养学生主动探索的良好学习习惯- 23 -四、教学过程一、复习提问,引入新课1有理数的绝对值是

41、怎样定义的?如何计算一个数的绝对值?2比较下列每对数的大小(1)-3 和-2; (2)-5和5; (3)-2 与-1;(4)-(-7)和-7五、新授在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数本章前言中,红队进 4 个球,失 2 个球;蓝队进 1 个球,失 1 个球,那么哪个队的净胜球多呢?要解决这个问题,先要分别求出它们的净胜球数红队的净胜球数为:4+(-2) ;蓝队的净胜球数为:1+(-1) 这里用到正数与负数的加法怎样计算

42、4+(-2)呢?下面借助数轴来讨论有理数的加法看下面的问题:一个物体作左右方向的运动,我们规定向左为负、向右为正(1)如果物体先向右运动 5m,再向右运动 3m,那么两次运动后总的结果是什么?我们知道,求两次运动的总结果,可以用加法来解答这里两次都是向右运动,显然两次运动后物体从起点向右运动了 8m,写成算式就是:5+3=8 这一运算在数轴上可表示,其中假设原点为运动的起点 (如下图)(2)如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?显然,两次运动后物体从起点向左运动了 8m,写成算式就是:(-5)+(-3)=-8 这个运算在数轴上可表示为(如下图):- 24 -

43、(3)如果物体先向右运动 5m,再向左运动 3m,那么两次运动后物体与起点的位置关系如何?在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了 2m(如下图)写成算式就是:5+(-3)=2 探究:还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果:(4)先向右运动 3m,再向左运动 5m,物体从起点向_运动了_m要求学生画出数轴,仿照(3)画出示意图写出算式是:3+(-5)=-2 (5)先向右运动 5m,再向左运动 5m,物体从起点向_运动了_m先向右运动 5m,再向左运动 5m,物体回到原来位置,即物体从起点向左(或向右)运动了 0m,因为+0=-0,所以写成算式

44、是:5+(-5)=0 (6)先向左运动 5m,再向左运动 5m,物体从起点向_运动了_m同样,先向左边运动 5m,再向右运动 5m,可写成算式是:(-5)+5=0 如果物体第 1 秒向右(或左)运动 5m,第 2 秒原地不动,两秒后物体从起点向右(或左)运动了多少呢?请你用算式表示它可写成算式是:5+0=5 或(-5)+0=-5 从以上写出的个式子中,你能总结出有理数加法的运算法则吗?引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值?算式是小学已学过的两个正数相加观察算式,两个加数的符号相同,都是“”号,和的符号也是“”号与加数符号相同;和的绝对值 8等于两个加数绝对值的

45、和,即-5+-3=-8由可归结为:- 25 -同号两数相加,取相同的符号,并把绝对值相加例如(-4)+(-5)=-(4+5)=-9观察算式、是两个互为相反数相加,和为 0由算式可归结为:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得 0由算式知,一个数同 0 相加,仍得这个数综合上述,我们发现有理数的加法法则,让学生朗读课本第 18 页中“有理数的加法法则”一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值例 1:计算(1) (-3)+(-5) ; (2) (-4.7)+2.9; (3) 18+(-0

46、.125) 分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算 (1)是同号两数相加,按法则 1,取原加数的符号“” ,并把绝对值相加 (2)是绝对值不相等的异号两数相加 (3)是绝对值相等的两数相加,根据法则 2 进行计算解:(1) (-3)+(-5)=-(3+5)=-8;(2) (-4.7)+2.9=-(4.7-2.9)=-1.8;(3) 8+(-0.125)= 18+(- )=0例 2:足球循环赛中,红队胜黄队 4:1,黄队胜蓝队 1:0,蓝队胜红队 1:0,计算各队的净胜球数分析:净胜球数是进球数与失球数的和,我们可以分别用正数、负数表示进球数和

47、失球数红队胜黄队 4:1 表示红队进 4 球,失 1 球,黄队进 1 球失 4 球解:每个队的进球总数记为正数,失球总数记为负数三场比赛中,红队共进 4 球,失 2 球,净胜球数为:(+4)+(-2)=+(4-2)=2;黄队共进 2 球,失 4 球,净胜球数为: (+2)+(-4)=-(4-2)=-2;蓝队共进 1 球,失 1 球,净胜球数为:- 26 -(+1)+(-1)=0以上讲解有理数加法时,严格按照:先判断类型,然后确定和的符号,最后计算和的绝对值,这三步骤进行六、巩固练习课本第 18 页练习 1、2 题七、课堂小结有理数的加法法则指出进行有理数加法运算,首先应该先判断类型,然后确定和的符号,最后计算和的绝对值类型为异号两数相加,和的符号依法则取绝对值较大的加数的符号,并把绝对值相减,因为正负互相抵消了一部分有理数加法还打破了算术数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报