1、第十八章 平行四边形1 .理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系 .2 .探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算 .3 .了解两条平行线之间距离的意义,能度量两条平行线之间的距离 .4 .探索并证明中位线定理 .1 .通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系 .2 .通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力 .1 .通过几何问题的证明和计算,体验证法和解法的多样性,
2、渗透转化思想 .2 .通过动手实践,积极参与数学活动 ,对数学有好奇心和求知欲 .平行四边形是特殊的四边形,它与三角形一样 ,既是几何中的基本图形 ,也是“空间与图形”领域主要的研究对象 .本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础 .本章内容主要包括:平行四边形、特殊的平行四边形 .其中平行四边形主要探索平行四边形的性质和判定, 特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定 .【重点】 理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,
3、掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题 .【难点】 分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证 .1 .关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系 .本章概念比较多,概念之间联系非常密切 ,关系复杂 .由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要 .实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质 .如有的学生不知道正方形既是矩形 ,又是菱形
4、,也是平行四边形,应用时常犯多用或少用条件的错误 .教学时,不仅要讲清矩形、菱形、正方形的特殊性质, 还要强调它们与平行四边形的从属关系和共同性质 .也就是在讲清每个概念特征的同时,强调它们的属概念, 弄清这些概念之间的关系 .在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念 ;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法 .弄清这些关系, 最好是用图示的办法 .在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系, 即内涵越小,外延越大;反之外延越小,内涵越大 .例如, 正方形的性质中,包含
5、四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大 .弄清了各种特殊平行四边形的概念 ,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了 .2 .进一步培养学生的合情推理能力和演绎推理能力 .从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上, 进一步巩固和提高的阶段 .本章内容比较简单,证明方法相对比较单一 ,学生前面已经进行了一些推理证明的训练 .但这种训练只是初步,要进一步巩固和提高 .教学中同样要重视推理论证的教学, 进一步提高学生的合情推理能力和演绎推理能力 .在推理与证明的要求方面,除了要求学生对
6、经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出 .另外, 为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法 .这种方法不是先有了定理再去证明它,而是根据题设和已有知识 ,经过推理 ,得出结论 .另外也有一些文字叙述的证明题,要求学生自己写出已知、求证 ,再进行证明 .这些对学生的推理能力要求较高 ,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维 ,对发展学生的思维能力有好处 .教学中要注意启发和引导 ,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展 .18.
7、1 平行四边形18.1.1 平行四边形的性质(2 课时)18.1.2 平行四边形的判定(3 课时)5 课时18.2 特殊的平行四边形18.2.1 矩形(2 课时)18.2.2 菱形(2 课时)18.2.3 正方形(1 课时)5 课时单元概括整合 1 课时18.1 平行四边形1 .理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质 .2 .理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形 .3 .掌握三角形的中位线的概念和定理 .1 .在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学
8、的意识,通过对平行四边形判定方法的探究, 提高学生解决问题的能力 .2 .通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题 ,渗透转化与化归意识 .通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法, 锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想 .让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 .【重点】 平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用 .【难点】 平行四边形的判定与性质定理的
9、综合运用 .18.1.1 平行四边形的性质1 .理解平行四边形的概念 .2 .探究并掌握平行四边形的边、角、对角线的性质 .3 .利用平行四边形的性质来解决简单的实际问题 .通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法, 锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想 .让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 .【重点】 平行四边形的概念和性质的探索 .【难点】 平行四边形性质的运用 .第 课时1 .理解平行四边形的定义及有关概念 .2 .探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四
10、边形的性质进行简单的计算和证明 .3 .了解平行线间距离的概念 .1 .经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维 .2 .在进行性质探索的活动过程中,发展学生的探究能力 .3 .在性质应用的过程中,提高学生运用数学知识解决实际问题的能力, 培养学生的推理能力和逻辑思维能力 .在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度 .【重点】 平行四边形边、角的性质探索和证明 .【难点】 如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法 .【教师准备】 教学中出示的教学
11、插图和例题的投影图片 .【学生准备】 方格纸,量角器 ,刻度尺 .导入一:过渡语 前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法 ,本节开始,我们继续研究生活中的常见图形 .我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏, 它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形 .本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明 . 设计意图 通过图片展示,让学生真切感受生活中存在大量平行四边形的原型 ,进而从实际背景中抽象出平行四边形
12、,让学生经历将实物抽象为图形的过程 .导入二:( 出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗 ?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等, 明确本章主要研究对象平行四边形 .过渡语 下面我们来认识特殊的四边形 平行四边形 . 设计意图 以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状 ,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备 ,并明确本章的学习任务 .1 .平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗 ?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做
13、平行四边形 .说明定义的两方面作用:既可以作为性质 ,又可以作为判定平行四边形的依据 .追问:平行四边形如何好记好读呢 ?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记 .平行四边形用“”表示,平行四边形 ABCD,记作“ ABCD”.如右图所示,引导学生找出图中的对边 ,对角 .对边: AD 与 BC,AB 与 DC;对角: A 与 C, B 与 D.进一步引导学生总结:四边形中不相邻的边 ,也就是没有公共顶点的边叫做对边 ;没有公共边的角,叫做对角 . 设计意图 给出定义,强调定义的作用, 让学生结合图形认识“对角”“对边”,为学习性质做好准备 .思路二请
14、举出你身边存在的平行四边形的例子 .学生举出生活中常见的例子 .如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏教师点评,画出图形,如右图所示 .提问:(1)你能说出平行四边形的定义吗 ?( 2)你能表示平行四边形吗?( 3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第 41 页,点名学生回答以上问题 ,教师进一步讲解:( 1)两组对边分别平行的四边形叫做平行四边形 .概念中有两个条件:是一个四边形; 两组对边分别平行 .( 2)指出表示平行四边形错误的情况,如 ACDB.( 3)作为性质:四边形 ABCD 是平行四边形, ADBC ,ABCD.作为判定: ADBC ,ABCD ,四边
15、形 ABCD 是平行四边形 . 设计意图 学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征 ,即:两组对边分别平行 .2 .平行四边形边、角的性质思路一过渡语 同学们回忆我们的学习经历,研究几何图形的一般思路是什么 ?一起回顾全等三角形的学习过程,得出研究的一般过程: 先给出定义 ,再研究性质和判定 .教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究 .提问:平行四边形是一种特殊的四边形 ,它除具有四边形的性质和两组对边分别平行外 ,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想 .猜想 1:四边形 ABCD 是平行四边形 ,那么 A
16、B=CD,AD=BC.猜想 2:四边形 ABCD 是平行四边形 ,那么 A= C, B= D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想 2. ABCD , A+ D=180, ADBC , A+ B=180, B= D.同理可得 A= C.在学生遇到困难时,教师引导学生构造全等三角形进行证明 .过渡语 我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法 .学生尝试,连接平行四边形的对角线 ,并证明猜想,如右图所示 .证明:连接 AC. ADBC ,ABCD ,1=2,3=4 .又 AC 是 ABC 和 CDA 的公共边, ABC CDA.
17、 AD=CB,AB=CD. B= D. BAD=1+4, DCB=2+3 ,1+4=2+3, BAD= DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等 .追问:通过证明,发现上述两个猜想正确 .这样得到平行四边形的两个重要性质 .你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗 ?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:四边形 ABCD 是平行四边形(已知), AB=CD,AD=BC(平行四边形的对边相等), A= C, B= D(平行四边形的对角相等) . 设计意图 让学生领悟证明线段相等或角相等通常采用证明三角形全等的方
18、法,而图形中没有三角形,只有四边形,我们需要添加辅助线 ,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点 .进而总结、提炼出将四边形问题化为三角形问题的基本思路 . 知识拓展 (1)运用平行四边形的这两条性质可以直接证明线段相等和角相等 .(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决 .(教材例 1)如图所示,在 ABCD 中, DE AB,BF CD,垂足分别为 E,F.求证 AE=CF.引导学生分析:要证明线段 AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明 ADE CBF.由题意容易得到 AED= CFB=90,再根据平行四边形
19、的性质可以得出 A= C,AD=CB.在此基础上,引导学生写出证明过程 ,并组织学生进行点评 .证明:四边形 ABCD 是平行四边形 , A= C,AD=CB.又 AED= CFB=90, ADE CBF. AE=CF. 设计意图 应用性质进行推理,体会得到证明思路的方法 .思路二1 .提问:根据定义画一个平行四边形 ABCD,并观察这个四边形除了 “两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB= BC= CD= AD= 猜想: A= B= C= D= 猜想: 小组合作完成,交流自己的猜想 .教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生
20、归纳:平行四边形的对边相等;平行四边形的对角相等 .2 .你能证明你发现的上述结论吗?已知:如图(1)所示,四边形 ABCD 中 ,ABCD ,ADBC.求证:(1) AD=BC,AB=CD;( 2) B= D, BAD= DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决 .证明:(1)连接 AC,如图(2) 所示 . ADBC ,ABCD ,1=2,3=4 .又 AC 是 ABC 和 CDA 的公共边, ABC CDA. AD=CB,AB=CD.( 2) ABC CDA(已证), B= D. BAD=1+4, DCB=2+3 ,1+4=2+3, BA
21、D= DCB.一组代表发言后,另一小组补充 ,我们发现不作辅助线也可以证明平行四边形的对角相等 . ABCD , BAD+ D=180, ADBC , BAD+ B=180, B= D.同理可得 BAD= DCB.教师根据学生的证明情况进行评价、总结 .证明线段相等或角相等时,通常证明三角形全等 ,图中没有三角形怎么办 ?一般是连接对角线将四边形的问题转化为三角形的问题 .引导学生将文字语言转化为符号语言表述,并进行笔记 .四边形 ABCD 是平行四边形(已知), AB=CD,AD=BC(平行四边形的对边相等), A= C, B= D(平行四边形的对角相等) .(补充) 如图,在 ABCD 中
22、, AC 是平行四边形 ABCD 的对角线 .( 1)请你说出图中的相等的角、相等的线段;( 2)对角线 AC 需添加一个什么条件,能使平行四边形 ABCD 的四条边相等 ?学生认真读题、思考、分析、讨论,得出有关结论 .因为平行四边形的对边相等,对角相等 .所以 AB=CD,AD=BC, DAB= BCD, B= D,又因为平行四边形的两组对边分别平行,所以 DAC= BCA, DCA= BAC.教师根据学生回答,板书有关正确的结论 .解决第(2)个问题时,学生思考、交流、讨论得出: 只要添加 AC 平分 DAB 即可 .说明理由:因为平行四边形的两组对边分别平行 ,所以 DCA= BAC,
23、而 DAC= BAC,所以 DCA= DAC,所以 AD=DC,又因为平行四边形的对边相等 ,所以 AB=DC=AD=BC. 设计意图 学生通过亲自动手,提出猜想, 验证猜想,得出结论, 并初步应用 .3 .平行线间的距离过渡语 距离是几何中的重要度量之一 .前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例 1 中, DE=BF 吗?学生思考,都容易发现:由 ADE CBF,容易得到 DE=BF.追问:如图所示,直线 ab ,A,D 为直线 a 上任意两点,点 A 到直线 b 的距离 AB 和点 D 到直线 b 的距离 DC相等吗?为什
24、么?学生讨论,发现容易证明 ABCD ,由已知得 ADBC ,所以四边形 ABCD 是平行四边形,所以 AB=CD.教师引导归纳:如果两条直线平行 ,那么一条直线上所有的点到另一条直线的距离都相等 .此时教师适时介绍两条平行线间的距离的概念及性质 .两条平行线中,一条直线上任意一点到另一条直线的距离 ,叫做这两条平行线之间的距离 ,平行线间的距离相等 .学生结合图指出: ab ,点 A 是 a 上的任意一点, AB b,B 是垂足,线段 AB 的长就是 a,b 之间的距离 .教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的 ,都是夹在两条平行线之间的最短的线段的长度 . 设计意图
25、结合例 1 的进一步追问,自然引出平行线间距离的概念 .思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线 ,在其中一条直线上任取若干点 ,过这些点作另一条直线的垂线 .老师边看边指导学生画图 .追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度, 你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等 .教师引导归纳:如果两条直线平行 ,那么一条直线上所有点到另一条直线的距离都相等 .此时教师适时介绍两条平行线间的距离的概念及性质 .两条平行线中,一条直线上任意一点到另一条直线的距离 ,叫做这两条平行线之间的距离 ,平行线间的距离相等 .如右图所示,用符号语言表述为
26、: l1 l 2,AB l2,CD l2, AB=CD.教师进一步强调:两平行线 l1 ,l2之间的距离是指什么? 指在一条直线 l1上任取一点 A,过 A 作 AB l2于点 B,线段 AB 的长度叫做两平行线 l1 ,l2间的距离 .引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系 .两平行线间的距离点到直线的距离 点与点之间的距离 .l1,l2间的距离转化为点 A 到 l2间的距离, 再转化为点 A 到点 B 的距离 .追问:如果 AB,CD 是夹在两平行线 l1,l2之间的两条平行线段, 那么 AB 和 CD 仍相等吗?教师引导学生思考:(出示教材第 43
27、 页图 18.1-5)如图所示, ab ,cd ,c,d 与 a,b 分别相交于 A,B,C,D 四点 .由平行四边形的概念和性质可知,四边形 ABDC 是平行四边形, AB=CD.说明:两条平行线之间的任何两条平行线段都相等 . 设计意图 借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂 ,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合 . 知识拓展 (1)当两条平行线确定后, 两条平行线之间的距离是一定值 ,不随垂线段位置的变化而改变 .(2)平行线之间的距离处处相等,因此在作平行四边形的高时 ,可以灵活选择位置 .4 .例题讲解(补充) 在 ABCD 中, BC
28、 边上的高为 4,AB=5,AC=2,试求 ABCD 的周长 .引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导, 明确思路后学生写解答过程 .解析 本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形 .设 BC 边上的高为 AE,分 AE 在 ABCD 的内部和 AE 在 ABCD 的外部两种情况计算 .解:在 ABCD 中, AB=CD=5,AD=BC.设 BC 边上的高为 AE.( 1)若 AE 在 ABCD 的内部,如图所示,在 Rt ABE 中, AB=5,AE=4,根据勾股定理,得:BE=3;在 Rt ACE 中, AC=2,AE=4,根据
29、勾股定理,得:CE= =2. BC=BE+CE=3+2=5. ABCD 的周长为 2(5+5)=20.( 2)若 AE 在 ABCD 的外部,如图所示,同理可得 BE=3,CE=2, BC=BE-CE=3-2=1, ABCD 的周长为 2(5+1)=12.综上, ABCD 的周长为 20 或 12. 解题策略 本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度, 因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论, 如下图所示 .本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征, 同时还学习了平行线间的距离,平行线的一些特征 .
30、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形 .平行四边形的性质:平行四边形的对边相等 ;平行四边形的对角相等 .平行线间的距离:两条平行线中 ,一条直线上任意一点到另一条直线的距离 ,叫做这两条平行线之间的距离 .平行线间的距离相等,两条平行线之间的任何两条平行线段都相等 .1 .已知 ABCD 中, A+ C=200,则 B 的度数是 ( )A.100 B.160 C.80 D.60解析: A+ C=200, A= C, A=100,又 ADBC , A+ B=180, B=180- A=80.故选C.2 .如图所示,在平行四边形 ABCD 中, EFBC ,GHAB ,EF,
31、GH 相交于点 O,则图中共有平行四边形的个数为 ( )A.6 B.7 C.8 D.9解析:图中的平行四边形有:平行四边形 AEOG、平行四边形 BHOE、平行四边形 CHOF、平行四边形 OFDG、平行四边形 ABHG、平行四边形 CHGD、平行四边形 AEFD、平行四边形 BEFC、平行四边形 ABCD.故选 D.3 .如图所示,在 ABCD 中, AD=2AB,CE 平分 BCD 交 AD 边于点 E,且 AE=3,则 AB 的长为 ( )A.4 B.3 C. D.2解析:四边形 ABCD 是平行四边形 , AB=DC,ADBC , DEC= BCE, CE 平分 DCB, DCE= B
32、CE, DEC= DCE, DE=DC=AB, AD=2AB=2CD,CD=DE, AD=2DE, AE=DE=3, DC=AB=DE=3.故选 B.4 .如图所示,在 ABCD 中, ABC 和 DBC 的面积的大小关系是 . 解析:两平行线 AD,BC 间的距离相等, ABC 与 DBC 是同底等高的两个三角形,它们的面积相等 .故填相等 .5 .如图所示,已知在平行四边形 ABCD 中, C=60,DE AB 于 E,DF BC 于 F.( 1)求 EDF 的度数;( 2)若 AE=4,CF=7,求平行四边形 ABCD 的周长 .解:(1)四边形 ABCD 是平行四边形, ABCD ,
33、A= C=60, C+ B=180. C=60, B=180- C=120. DE AB,DF BC, DEB= DFB=90, EDF=360- DEB- DFB- B=60. (2)在 RtADE 和 Rt CDF 中, A= C=60, ADE= CDF=30, AD=2AE=8,CD=2CF=14,平行四边形 ABCD 的周长为 2(8+14)=44.第 1 课时1 .平行四边形的定义2 .平行四边形边、角的性质例 1 例 23 .平行线间的距离4 .例题讲解例 3一、教材作业【必做题】教材第 43 页练习第 1,2 题;教材第 49 页习题 18.1 第 1,2 题 .【选做题】教材
34、第 50 页习题 18.1 第 8 题 .二、课后作业【基础巩固】1.如图所示,在平行四边形 ABCD 中 , B=110,延长 AD 至 F,延长 CD 至 E,连接 EF,则 E+ F 等于 ( )A.110 B.30 C.50 D.702.如图所示, l1 l 2,BECF ,BA l1 于点 A,DC l2于点 C,有下面的四个结论 ;(1)AB=DC;(2)BE=CF;(3)S ABE=SDCF;(4)S 四边形 ABCD=S 四边形 BCFE.其中正确的有 ( )A.4 个 B.3 个 C.2 个 D.1 个3.如图所示,点 E 是 ABCD 的边 CD 的中点, AD,BE 的延
35、长线相交于点 F,DF=3,DE=2,则 ABCD 的周长为 ( )A.5 B.7 C.10 D.144.如图所示,在平行四边形 ABCD 中 ,AB=4, BAD 的平分线与 BC 的延长线交于点 E,与 DC 交于点 F,且点 F 为边 DC 的中点, DG AE,垂足为 G,若 DG=1,则 AE 的长为 ( )A.2 B.4 C.4 D.85.如图所示, ABCD 与 DCFE 的周长相等 ,且 BAD=60, F=110,则 DAE 的度数为 . 【能力提升】6.如图所示,在平面直角坐标系中 ,平行四边形 ABCD 的顶点 A,B,C 的坐标分别是(0,0),(3,0),(4,2),
36、则顶点 D 的坐标为 . 7.如图所示,在 ABCD 中, DE 平分 ADC,AD=6,BE=2,则 ABCD 的周长是 . 8.(2015自贡中考) 在 ABCD 中, BCD 的平分线与 BA 的延长线相交于点 E,BH EC 于点 H.求证 CH=EH.9.如图所示,四边形 ABCD 是一个平行四边形 ,BE CD 于点 E,BF AD 于点 F.(1)请用图中的字母表示出平行线 AD 与 BC 之间的距离;(2)若 BE=2 cm,求平行线 AB 与 CD 之间的距离 .10.如图所示,在平行四边形 ABCD 中, AE BC,交其延长线于点 E,AF CD 于点 F, EAF=30
37、,AE=4 cm,AF=3 cm,求平行四边形 ABCD 的周长 .11.如图所示,已知四边形 ABDE 是平行四边形 ,C 为边 BD 延长线上一点 ,连接 AC,CE,AB=AC.(1)求证 BAD ACE;(2)若 B=30, ADC=45,BD=10,求平行四边形 ABDE 的面积 .【拓展探究】12.如图所示,点 E,F 分别在平行四边形 ABCD 的边 DC,CB 上, 且 AE=AF,DG AF,BH AE,G,H 是垂足 .求证 DG=BH.【答案与解析】1.D(解析:由平行四边形的对角相等可得 ADC=110,再由邻补角的性质得出 FDC=70,所以 E+ F= FDC=70
38、.)2.A(解析: l1l 2,BA l1 于点 A,DC l2于点 C, AB=CD,故(1)正确; l1 l 2,BECF , BE=CF,故(2) 正确; 根据 HL 可以证明 Rt ABERt DCF,因此, S ABE=S DCF,故(3)正确; 四边形 ABCD 与四边形 BCFE 是同底等高的两个平行四边形, S 四边形 ABCD=S 四边形 BCFE,故(4)正确 .故选 A.)3.D(解析:四边形 ABCD 为平行四边形, ADBC , F= CBF, FDE= C. E 为 CD 的中点, DE=CE,FDE BCE(AAS), BC=AD=FD, DF=3,DE=2, A
39、D=3,AB=DC=4, ABCD 的周长为 2(AD+AB)=14.故选 D.)4.B(解析: AE 为 DAB 的平分线, DAE= BAE.由题意知DCAB , BAE= DFA, DAE= DFA, AD=FD.又 F 为 DC 的中点, DF=CF, AD=DF=DC=AB=2,在 Rt ADG中,根据勾股定理得 AG=,则 AF=2AG=2,由题意知 ADBC , DAF= E,在 ADF 和 ECF 中, ADF ECF(AAS), AF=EF,则 AE=2AF=4.故选 B.)5.25(解析: ABCD 与 DCFE 的周长相等, 且 CD=CD, AD=DE, DAE= DE
40、A, BAD=60, F=110, ADC=120, CDE= F=110, ADE=360-120-110=130, DAE=25.故填 25.)6.(1,2)(解析 :A,B 的坐标分别是( 0,0),(3,0),则 AB=3,根据平行四边形对边相等,得 CD=AB=3,点 C 的坐标为(4,2),点 D 的坐标为(1,2) .)7.20(解析:在 ABCD 中, AB=CD,ADBC ,且 AD=BC=6. BE=2, CE=BC-BE=6-2=4.如图所示, ADBC ,1=3, 又由题意知1=2,2=3, CD=CE=4, ABCD 的周长为 2(AD+CD)=2(6+4)=210=
41、20.故填 20 .)8.证明:如图所示,在 ABCD 中, BECD , E=2 . CE 平分 BCD,1=2 .1= E. BE=BC.又 BH EC, CH=EH.9.解:(1) 四边形 ABCD 是平行四边形 , ADBC , BF AD, BF BC,平行线 AD 与 BC 之间的距离是线段BF 的长度 . (2)四边形 ABCD 是平行四边形, ABCD , BE CD, BE AB,平行线 AB 与 CD 之间的距离是线段 BE 的长度,是 2 cm.10.解:四边形 ABCD 是平行四边形 , ABCD , B= D. AE BC,AF CD, EAF=30, ECD= B=
42、 D=30. AE=4 cm,AF=3 cm, AB=8 cm,AD=6 cm,平行四边形 ABCD 的周长为8+8+6+6=28(cm).11.(1)证明: AB=AC, B= ACB.又四边形 ABDE 是平行四边形, AEBD ,AE=BD, ACB= CAE= B.在 DBA 和 AEC 中, DBA EAC(SAS).(2)解: 过 A 作 AG BC,垂足为 G,如图所示 .设 AG=x, 在 Rt AGD 中, ADC=45, AG=DG=x.在 Rt AGB 中,由 B=30,易得 BG=x .又 BD=10, BG-DG=BD=10,即x-x=10,解得 x=5+5, S 平
43、行四边形 ABDE=BDAG=10(5+5)=50+50.12.证明:连接 BE,DF.设平行四边形 ABCD 的面积为 S,AB,AD 边上的高分别为 a 和 b,依题意:S=ABa=ADb, S ABE=ABa=S,S ADF=ADb=S, S ABE=S ADF. DG AF,BH AE, S ABE=AEBH,SADF=AFDG, AEBH=AFDG, AE=AF, DG=BH.本节以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识 .整个过程充满着观察、实验、模拟、推断等探索性与挑战性活动 .改变了以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去
44、 .这一节课学生已通过画图,测量, 猜想的探究方式发现 “平行四边形的对边相等,对角相等”等特征 .学生参与度高 ,提高学生的学习兴趣和实际操作能力 ,取得较好的学习效果 .引导学生进行思考的语言不够精练,时间把握得不够好, 课堂不够紧凑 .由于性质探索部分花了较多时间,导致练习的时间不够多 .应该让学生在练习的时候有更多的时间讨论,说得更多 .最后的小结部分留足时间,由学生自己归纳本节课的内容 ,把性质按边、角进行归纳 ,配以图表方便记忆 .补充的例题在教学中侧重对学生思路的引导,开阔学生的视野 .练习(教材第 43 页)1.解:(1) 在 ABCD 中, AB=CD=5,BC=AD=3,
45、ABCD 的周长= AB+CD+BC+AD=16. (2)在 ABCD 中, A= C=38, B= D=180-38=142.2.解: AD=BC.理由如下: ADBC ,ABCD ,四边形 ABCD 是平行四边形, AD=BC.本课时教材设计理念平行四边形是生活中常见的几何图形,是基本的几何图形之一, 它具有丰富的几何性质 .对于平行四边形,按照图形概念的从属关系,平行四边形首先是四边形 ,具有四边形的一般性质 ,又是两组对边分别平行的特殊四边形,是四边形中的一类特殊图形 ,有它特殊的性质,同时它又包括矩形、菱形、正方形,具有它们的共性 .平行四边形性质的探究,经历了感知 (观察)、猜想、
46、证明等过程, 本节主要研究边、角的性质 .平行四边形性质的证明,应用了四边形问题转化为三角形问题的思想 ,是平行线的性质、全等三角形等知识的延续和深化,对于培养学生演绎推理,训练学生思维,体验数学思维规律等方面起着重要的作用 .平行四边形的性质也是后续学习矩形、菱形、正方形等知识的基础,在教材中起着承上启下的作用 .平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据 .在研究了平行四边形的性质后,教材引进了平行线间距离的概念,距离是几何中的重要概念,是几何学习的重要起点 .点与点之间的距离是点到直线的距离、两条平行线之间距离的基础 .它们在本质上都是点与点之间的距离
47、 .任何两条平行线之间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度 .两条平行线之间距离的给出,是平行四边形概念和性质的综合应用 .如何分田地面积相等从前,一位农场主有一大块田地 ,其形状是一个平行四边形(图中的 ABCD).田地内有一口井,位于图中的点O 处 .井所占的面积非常有限,与整片田地比起来简直可以看成 “一点”(面积可忽略不计),农场主临死前留下了遗嘱,把两块三角形的田地(图中的 AOD 和 BOC)给大儿子, 剩下的( AOB 和 COD)全部给小儿子,至于这口井,两家可以共用 .由于平行四边形不比正方形或菱形 ,相邻两边 AD,AB 不相等( ADAB),所以遗嘱公布之后,亲友们七嘴八舌,议论纷纷 .有人埋怨农场主偏心,分配不公平; 也有人替小儿子抱不平 .同学们,你们觉得呢? 我们可以利用什么数学知识进行验证呢?我们不妨设大儿子得到的田地( AOD 和 BOC)面积之和为 S,过点 O 作