1、2018 中考数学试题分类汇编:考点 11 分式方程一选择题(共 15 小题)1(2018成都)分式方程 =1 的解是( )Ax=1 Bx=1 Cx=3 Dx=3【分析】观察可得最简公分母是 x(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【解答】解: =1,去分母,方程两边同时乘以 x(x2)得:(x+1)(x2)+x=x(x2),x2x2+x=x 22x,x=1,经检验,x=1 是原分式方程的解,故选:A2(2018昆明)甲、乙两船从相距 300km 的 A、B 两地同时出发相向而行,甲船从 A 地顺流航行 180km 时与从 B 地逆流航行的乙船相遇,水流的速度为 6k
2、m/h,若甲、乙两船在静水中的速度均为 xkm/h,则求两船在静水中的速度可列方程为( )A = B =C = D =【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案【解答】解:设甲、乙两船在静水中的速度均为 xkm/h,则求两船在静水中的速度可列方程为:= 故选:A3(2018通辽)学校为创建“书香校园”购买了一批图书已知购买科普类图书花费10000 元,购买文学类图书花费 9000 元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵 5 元,且购买科普书的数量比购买文学书的数量少 100 本求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是 x 元,
3、则可列方程为( )A =100 B =100C =100 D =100【分析】直接利用购买科普书的数量比购买文学书的数量少 100 本得出等式进而得出答案【解答】解:设科普类图书平均每本的价格是 x 元,则可列方程为: =100故选:B4(2018张家界)若关于 x 的分式方程 =1 的解为 x=2,则 m 的值为( )A5 B4 C3 D2【分析】直接解分式方程进而得出答案【解答】解:关于 x 的分式方程 =1 的解为 x=2,x=m2=2,解得:m=4故选:B5(2018株洲)关于 x 的分式方程 解为 x=4,则常数 a 的值为( )Aa=1 Ba=2 Ca=4 Da=10【分析】根据分
4、式方程的解的定义把 x=4 代入原分式方程得到关于 a 的一次方程,解得a=1【解答】解:把 x=4 代入方程 ,得+ =0,解得 a=10故选:D6(2018黑龙江)已知关于 x 的分式方程 =1 的解是负数,则 m 的取值范围是( )Am3 Bm3 且 m2 Cm3 Dm3 且 m2【分析】直接解方程得出分式的分母为零,再利用 x1 求出答案【解答】解: =1解得:x=m3,关于 x 的分式方程 =1 的解是负数,m30,解得:m3,当 x=m3=1 时,方程无解,则 m2,故 m 的取值范围是:m3 且 m2故选:D7(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值 30
5、 万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的 1.5 倍,总产量比原计划增加了 6 万千克,种植亩数减少了 10 亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为 x 万千克,根据题意,列方程为( )A =10 B =10C =10 D + =10【分析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数=10 亩,根据等量关系列出方程即可【解答】解:设原计划每亩平均产量 x 万千克,则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为: =10故选:A8(2018重庆)若数 a 使关于 x 的不等式组 有且只有四个整数解,且使关于 y 的方程
6、=2 的解为非负数,则符合条件的所有整数 a 的和为( )A3 B2 C1 D2【分析】表示出不等式组的解集,由不等式有且只有 4 个整数解确定出 a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数 a 的值,进而求出之和【解答】解: ,不等式组整理得: ,由不等式组有且只有四个整数解,得到 0 1,解得:2a2,即整数 a=1,0,1,2,=2,分式方程去分母得:y+a2a=2(y1),解得:y=2a,由分式方程的解为非负数以及分式有意义的条件,得到 a 为1,0,2,之和为 1故选:C9(2018临沂)新能源汽车环保节能,越来越受到消费者的喜爱各种品牌相继投放市场一汽贸
7、公司经销某品牌新能源汽车去年销售总额为 5000 万元,今年 15 月份,每辆车的销售价格比去年降低 1 万元销售数量与去年一整年的相同销售总额比去年一整年的少 20%,今年 15 月份每辆车的销售价格是多少万元?设今年 15 月份每辆车的销售价格为 x 万元根据题意,列方程正确的是( )A = B =C = D =【分析】设今年 15 月份每辆车的销售价格为 x 万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程【解答】解:设今年 15 月份每辆车的销售价格为 x 万元,则去年的销售价格为(x+1)万元/辆,根据题意,得: = ,故选:A10(2018哈尔
8、滨)方程 = 的解为( )Ax=1 Bx=0 Cx= Dx=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:x+3=4x,解得:x=1,经检验 x=1 是分式方程的解,故选:D11(2018海南)分式方程 =0 的解是( )A1 B1 C1 D无解【分析】根据解分式方程的步骤计算可得【解答】解:两边都乘以 x+1,得:x21=0,解得:x=1 或 x=1,当 x=1 时,x+10,是方程的解;当 x=1 时,x+1=0,是方程的增根,舍去;所以原分式方程的解为 x=1,故选:B12(2018德州)分式方程 1= 的解为(
9、)Ax=1 Bx=2 Cx=1 D无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:x 2+2xx 2x+2=3,解得:x=1,经检验 x=1 是增根,分式方程无解故选:D13(2018黔南州)施工队要铺设 1000 米的管道,因在中考期间需停工 2 天,每天要比原计划多施工 30 米才能按时完成任务设原计划每天施工 x 米,所列方程正确的是( )A =2 B =2C =2 D =2【分析】设原计划每天施工 x 米,则实际每天施工(x+30)米,根据:原计划所用时间实际所用时间=2,列出方程即可【解答】解:设原计划每天施工
10、 x 米,则实际每天施工(x+30)米,根据题意,可列方程: =2,故选:A14(2018重庆)若数 a 使关于 x 的不等式组 ,有且仅有三个整数解,且使关于 y 的分式方程 + =1 有整数解,则满足条件的所有 a 的值之和是( )A10 B12 C16 D18【分析】根据不等式的解集,可得 a 的范围,根据方程的解,可得 a 的值,根据有理数的加法,可得答案【解答】解: ,解得 x3,解得 x ,不等式组的解集是3x 仅有三个整数解,1 08a3,+ =13ya12=y2y=y2,a6,又 y= 有整数解,a=8 或4,所有满足条件的整数 a 的值之和是84=12,故选:B15(2018
11、淄博)“绿水青山就是金山银山”某工程队承接了 60 万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前30 天完成了这一任务设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是( )A BC D【分析】设实际工作时每天绿化的面积为 x 万平方米,根据工作时间=工作总量工作效率结合提前 30 天完成任务,即可得出关于 x 的分式方程【解答】解:设实际工作时每天绿化的面积为 x 万平方米,则原来每天绿化的面积为万平方米,依题意得: =30,即 故选:C二填空题(共 14 小题)16(2018潍坊)当 m= 2 时,解分式方程 = 会
12、出现增根【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为 0 的未知数的值【解答】解:分式方程可化为:x5=m,由分母可知,分式方程的增根是 3,当 x=3 时,35=m,解得 m=2,故答案为:217(2018新疆)某商店第一次用 600 元购进 2B 铅笔若干支,第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了 30 支则该商店第一次购进的铅笔,每支的进价是 4 元【分析】设该商店第一次购进铅笔的单价为 x 元/支,则第二次购进铅笔的单价为 x 元/支,根据单价=总价数量结合第二次购进数量比第一次少了 30 支,即可得出关
13、于 x 的分式方程,解之经检验后即可得出结论【解答】解:设该商店第一次购进铅笔的单价为 x 元/支,则第二次购进铅笔的单价为 x元/支,根据题意得: =30,解得:x=4,经检验,x=4 是原方程的解,且符合题意答:该商店第一次购进铅笔的单价为 4 元/支故答案为:418(2018广州)方程 = 的解是 x=2 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:x+6=4x,解得:x=2,经检验 x=2 是分式方程的解,故答案为:x=219(2018黄石)分式方程 =1 的解为 x=0.5 【分析】方程两边都乘以最简公分母,化
14、为整式方程,然后解方程,再进行检验【解答】解:方程两边都乘以 2(x 21)得,8x+25x5=2x 22,解得 x1=1,x 2=0.5,检验:当 x=0.5 时,x1=0.51=0.50,当 x=1 时,x1=0,所以 x=0.5 是方程的解,故原分式方程的解是 x=0.5故答案为:x=0.520(2018齐齐哈尔)若关于 x 的方程 + = 无解,则 m 的值为 1 或 5或 【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案【解答】解:去分母得:x+4+m(x4)=m+3,可得:(m+1)x=5m1,当 m+1=0 时,一元一次方程无解,此时 m=1,当 m+10
15、时,则 x= =4,解得:m=5 或 ,综上所述:m=1 或 5 或 ,故答案为:1 或 5 或 21(2018铜仁市)分式方程 =4 的解是 x= 9 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:3x1=4x+8,解得:x=9,经检验 x=9 是分式方程的解,故答案为:922(2018常德)分式方程 =0 的解为 x= 1 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:去分母得:x23x=0,解得:x=1,经检验 x=1 是分式方程的解故答案为:123(20
16、18嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲检测 300个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个,则根据题意,可列出方程:= (110%) 【分析】根据“甲检测 300 个比乙检测 200 个所用的时间少 10%”建立方程,即可得出结论【解答】解:设设甲每小时检测 x 个,则乙每小时检测(x20)个,根据题意得, = (110%),故答案为 = (110%)24(2018达州)若关于 x 的分式方程 =2a 无解,则 a 的值为 1 或 【分析】直接解分式方程,再利用当 12a=0 时,当 12a0 时,分别得出答案【解答】解:去分母得:x3
17、a=2a(x3),整理得:(12a)x=3a,当 12a=0 时,方程无解,故 a= ;当 12a0 时,x= =3 时,分式方程无解,则 a=1,故关于 x 的分式方程 =2a 无解,则 a 的值为:1 或 故答案为:1 或 25(2018湘潭)分式方程 =1 的解为 x=2 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:两边都乘以 x+4,得:3x=x+4,解得:x=2,检验:x=2 时,x+4=60,所以分式方程的解为 x=2,故答案为:x=226(2018无锡)方程 = 的解是 x= 【分析】方程两边都乘以 x(x+1)化分
18、式方程为整式方程,解整式方程得出 x 的值,再检验即可得出方程的解【解答】解:方程两边都乘以 x(x+1),得:(x3)(x+1)=x 2,解得:x= ,检验:x= 时,x(x+1)= 0,所以分式方程的解为 x= ,故答案为:x= 27(2018遂宁)A,B 两市相距 200 千米,甲车从 A 市到 B 市,乙车从 B 市到 A 市,两车同时出发,已知甲车速度比乙车速度快 15 千米/小时,且甲车比乙车早半小时到达目的地若设乙车的速度是 x 千米/小时,则根据题意,可列方程 = 【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可【解答】解:设乙车的速度是 x 千米/小时,则根据题意,可
19、列方程: = 故答案为: = 28(2018宿迁)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树 960 棵,由于青年志愿者支援,实际每天种树的棵数是原计划的 2 倍,结果提前 4 天完成任务,则原计划每天种树的棵数是 120 棵 【分析】设原计划每天种树 x 棵,由题意得等量关系:原计划所用天数实际所用天数=4,根据等量关系,列出方程,再解即可【解答】解:设原计划每天种树 x 棵,由题意得: =4,解得:x=120,经检验:x=120 是原分式方程的解,故答案为:120 棵29(2018眉山)已知关于 x 的分式方程 2= 有一个正数解,则 k 的取值范围为 k6 且 k3 【分析】
20、根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零【解答】解; 2= ,方程两边都乘以(x3),得x=2(x3)+k,解得 x=6k3,关于 x 的方程程 2= 有一个正数解,x=6k0,k6,且 k3,k 的取值范围是 k6 且 k3故答案为:k6 且 k3三解答题(共 21 小题)30(2018徐州)从徐州到南京可乘列车 A 与列车 B,已知徐州至南京里程约为350km,A 与 B 车的平均速度之比为 10:7,A 车的行驶时间比 B 车的少 1h,那么两车的平均速度分别为多少?【分析】设 A 车的平均速度为 10xkm/h,则
21、 B 车的平均速度为 7xkm/h,根据时间=路程速度结合 A 车的行驶时间比 B 车的少 1h,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设 A 车的平均速度为 10xkm/h,则 B 车的平均速度为 7xkm/h,根据题意得: =1,解得:x=15,经检验,x=15 是分式方程的根,10x=150,7x=105答:A 车的平均速度为 150km/h,B 车的平均速度为 105km/h31(2018岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌某工程队负责对一面积为 33000 平方米的非法砂石码头进行拆除,
22、回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了 20%,结果提前 11 天完成任务,求实际平均每天施工多少平方米?【分析】设原计划平均每天施工 x 平方米,则实际平均每天施工 1.2x 平方米,根据时间=工作总量工作效率结合提前 11 天完成任务,即可得出关于 x 的分式方程,解之即可得出结论【解答】解:设原计划平均每天施工 x 平方米,则实际平均每天施工 1.2x 平方米,根据题意得: =11,解得:x=500,经检验,x=500 是原方程的解,1.2x=600答:实际平均每天施工 600 平方米32(2018连云港)解方程: =0【分析】根据等式
23、的性质,可得整式方程,根据解整式方程,可得答案【解答】解:两边乘 x(x1),得3x2(x1)=0,解得 x=2,经检验:x=2 是原分式方程的解33(2018威海)某自动化车间计划生产 480 个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时 20 分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了 40 分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产 x 个零件,则软件升级后每小时生产(1+ )x 个零件,根据工作时间=工作总量工作效率结合软件升级后节省的时间,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设软
24、件升级前每小时生产 x 个零件,则软件升级后每小时生产(1+ )x 个零件,根据题意得: = + ,解得:x=60,经检验,x=60 是原方程的解,且符合题意,(1+ )x=80答:软件升级后每小时生产 80 个零件34(2018宜宾)我市经济技术开发区某智能手机有限公司接到生产 300 万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了 50%,结果比原计划提前 5 个月完成交货,求每月实际生产智能手机多少万部【分析】设原计划每月生产智能手机 x 万部,则实际每月生产智能手机(1+50%)x 万部,根据工作时间=工作总量工作效率结合提前 5 个月完成任务,即可
25、得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设原计划每月生产智能手机 x 万部,则实际每月生产智能手机(1+50%)x 万部,根据题意得: =5,解得:x=20,经检验,x=20 是原方程的解,且符合题意,(1+50%)x=30答:每月实际生产智能手机 30 万部35(2018云南)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化面积比乙工程队完成300 平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿
26、化面积?【分析】设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x 平方米的绿化面积,根据工作时间=总工作量工作效率结合甲工程队完成 300 平方米的绿化面积比乙工程队完成 300 平方米的绿化面积少用 3 小时,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设乙工程队每小时能完成 x 平方米的绿化面积,则甲工程队每小时能完成 2x平方米的绿化面积,根据题意得: =3,解得:x=50,经检验,x=50 是分式方程的解答:乙工程队每小时能完成 50 平方米的绿化面积36(2018东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m
27、 和 2000m,两人分别从家中同时出发,已知小明和小刚的速度比是 3:4,结果小明比小刚提前 4min 到达剧院求两人的速度【分析】设小明的速度为 3x 米/分,则小刚的速度为 4x 米/分,根据时间=路程速度结合小明比小刚提前 4min 到达剧院,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设小明的速度为 3x 米/分,则小刚的速度为 4x 米/分,根据题意得: =4,解得:x=25,经检验,x=25 是分式方程的根,且符合题意,3x=75,4x=100答:小明的速度是 75 米/分,小刚的速度是 100 米/分37(2018曲靖)甲乙两人做某种机械零件,已知甲每小时
28、比乙多做 4 个,甲做 120 个所用的时间与乙做 100 个所用的时间相等,求甲乙两人每小时各做几个零件?【分析】设甲每小时做 x 个零件,则乙每小时做(x4)个零件,根据工作时间=工作总量工作效率结合甲做 120 个所用的时间与乙做 100 个所用的时间相等,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设甲每小时做 x 个零件,则乙每小时做(x4)个零件,根据题意得: = ,解得:x=24,经检验,x=24 是分式方程的解,x4=20答:甲每小时做 24 个零件,乙每小时做 20 个零件38(2018扬州)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长 1462
29、km,是我国最繁忙的铁路干线之一如果从北京到上海的客车速度是货车速度的 2 倍,客车比货车少用 6h,那么货车的速度是多少?(精确到 0.1km/h)【分析】设货车的速度是 x 千米/小时,则客车的速度是 2x 千米/小时,根据时间=路程速度结合客车比货车少用 6 小时,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设货车的速度是 x 千米/小时,则客车的速度是 2x 千米/小时,根据题意得: =6,解得:x=121 121.8经检验,x=121.8 为此分式方程的解答:货车的速度约是 121.8 千米/小时39(2018乌鲁木齐)某校组织学生去 9km 外的郊区游玩,一部
30、分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达己知公共汽车的速度是自行车速度的 3 倍,求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为 xkm/h,则公共汽车的速度为 3xkm/h,根据时间=路程速度结合乘公共汽车比骑自行车少用 小时,即可得出关于 x 的分式方程,解之经检验即可得出结论【解答】解:设自行车的速度为 xkm/h,则公共汽车的速度为 3xkm/h,根据题意得: = ,解得:x=12,经检验,x=12 是原分式方程的解,3x=36答:自行车的速度是 12km/h,公共汽车的速度是 36km/h40(2018呼和浩特)计算(1)计算:2 2
31、 +(3 ) 3sin45;(2)解方程: +1= 【分析】(1)根据实数混合运算顺序和运算法则计算可得;(2)根据解分式方程的步骤依次计算可得【解答】解:(1)原式= +(9 ) 3= + + =3 ;(2)两边都乘以 x2,得:x3+x2=3,解得:x=1,检验:x=1 时,x2=10,所以分式方程的解为 x=141(2018绵阳)(1)计算: sin60+|2 |+(2)解分式方程: +2=【分析】(1)根据算术平方根、特殊角的三角函数、绝对值进行计算即可;(2)先去分母,再解整式方程即可,注意检验【解答】解:(1)原式= 3 +2 += +2=2;(2)去分母得,x1+2(x2)=3,
32、3x5=3,解得 x= ,检验:把 x= 代入 x20,所以 x= 是原方程的解42(2018深圳)某超市预测某饮料有发展前途,用 1600 元购进一批饮料,面市后果然供不应求,又用 6000 元购进这批饮料,第二批饮料的数量是第一批的 3 倍,但单价比第一批贵 2 元(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于 1200 元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为 x 元,则第二批饮料进货单价为(x+2)元,根据单价=总价单价结合第二批饮料的数量是第一批的 3 倍,即可得出关于 x 的分式方程,解之经检验后即可得出结论
33、;(2)设销售单价为 m 元,根据获利不少于 1200 元,即可得出关于 m 的一元一次不等式,解之取其最小值即可得出结论【解答】解:(1)设第一批饮料进货单价为 x 元,则第二批饮料进货单价为(x+2)元,根据题意得:3 = ,解得:x=8,经检验,x=8 是分式方程的解答:第一批饮料进货单价为 8 元(2)设销售单价为 m 元,根据题意得:200(m8)+600(m10)1200,解得:m11答:销售单价至少为 11 元43(2018山西)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好已知“太原南北京西”全程大约 500 千米
34、,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶 40 千米,其行驶时间是该列“和谐号”列车行驶时间的 (两列车中途停留时间均除外)经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间【分析】设“复兴号”G92 次列车从太原南到北京西的行驶时间需要 x 小时,则“和谐号”列车的行驶时间需要 x 小时,根据速度=路程时间结合“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶 40 千米,即可得出关于 x 的分式方程,解之经检验后即可得出结论【解答】解:设“复兴号”G92 次列车从太原
35、南到北京西的行驶时间需要 x 小时,则“和谐号”列车的行驶时间需要 x 小时,根据题意得: = +40,解得:x= ,经检验,x= 是原分式方程的解,x+ = 答:乘坐“复兴号”G92 次列车从太原南到北京西需要 小时44(2018广东)某公司购买了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等(1)求该公司购买的 A、B 型芯片的单价各是多少元?(2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购买了多少条 A 型芯片?【分析】(1)设 B 型芯片的
36、单价为 x 元/条,则 A 型芯片的单价为(x9)元/条,根据数量=总价单价结合用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等,即可得出关于 x 的分式方程,解之经检验后即可得出结论;(2)设购买 a 条 A 型芯片,则购买(200a)条 B 型芯片,根据总价=单价数量,即可得出关于 a 的一元一次方程,解之即可得出结论【解答】解:(1)设 B 型芯片的单价为 x 元/条,则 A 型芯片的单价为(x9)元/条,根据题意得: = ,解得:x=35,经检验,x=35 是原方程的解,x9=26答:A 型芯片的单价为 26 元/条,B 型芯片的单价为 35 元/条(
37、2)设购买 a 条 A 型芯片,则购买(200a)条 B 型芯片,根据题意得:26a+35(200a)=6280,解得:a=80答:购买了 80 条 A 型芯片45(2018宁波)某商场购进甲、乙两种商品,甲种商品共用了 2000 元,乙种商品共用了 2400 元已知乙种商品每件进价比甲种商品每件进价多 8 元,且购进的甲、乙两种商品件数相同(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为 60 元,乙种商品的销售单价为 88 元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品
38、销售单价保持不变要使两种商品全部售完后共获利不少于 2460 元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为 x 元,乙种商品的每件进价为 y 元根据“某商场购进甲、乙两种商品,甲种商品共用了 2000 元,乙种商品共用了 2400 元购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售 a 件,则由“两种商品全部售完后共获利不少于 2460元”列出不等式【解答】解:(1)设甲种商品的每件进价为 x 元,则乙种商品的每件进价为(x+8)元根据题意,得, = ,解得 x=40经检验,x=40 是原方程的解答:甲种商品的每件进价为 40 元,乙种
39、商品的每件进价为 48 元;(2)甲乙两种商品的销售量为 =50设甲种商品按原销售单价销售 a 件,则(6040)a+(600.740)(50a)+(8848)502460,解得 a20答:甲种商品按原销售单价至少销售 20 件46(2018南京)刘阿姨到超市购买大米,第一次按原价购买,用了 105 元,几天后,遇上这种大米 8 折出售,她用 140 元又买了一些,两次一共购买了 40kg这种大米的原价是多少?【分析】设这种大米的原价是每千克 x 元,根据两次一共购买了 40kg 列出方程,求解即可【解答】解:设这种大米的原价是每千克 x 元,根据题意,得 + =40,解得:x=7经检验,x=
40、7 是原方程的解答:这种大米的原价是每千克 7 元47(2018邵阳)某公司计划购买 A,B 两种型号的机器人搬运材料已知 A 型机器人比B 型机器人每小时多搬运 30kg 材料,且 A 型机器人搬运 1000kg 材料所用的时间与 B 型机器人搬运 800kg 材料所用的时间相同(1)求 A,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购 A,B 两种型号的机器人共 20 台,要求每小时搬运材料不得少于2800kg,则至少购进 A 型机器人多少台?【分析】(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小时搬运(x+30)千克材料,根据 A 型机器人搬运
41、1000kg 材料所用的时间与 B 型机器人搬运 800kg 材料所用的时间相同建立方程求出其解就可以得出结论(2)设购进 A 型机器人 a 台,根据每小时搬运材料不得少于 2800kg 列出不等式并解答【解答】解:(1)设 B 型机器人每小时搬运 x 千克材料,则 A 型机器人每小时搬运(x+30)千克材料,根据题意,得 = ,解得 x=120经检验,x=120 是所列方程的解当 x=120 时,x+30=150答:A 型机器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料;(2)设购进 A 型机器人 a 台,则购进 B 型机器人(20a)台,根据题意,得 150a+
42、120(20a)2800,解得 a a 是整数,a14答:至少购进 A 型机器人 14 台48(2018贵港)(1)计算:|35|(3.14) 0+(2) 1 +sin30;(2)解分式方程: +1= 【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【解答】解:(1)原式=531 + =1;(2)方程两边都乘以(x+2)(x2),得:4+(x+2)(x2)=x+2,整理,得:x 2x2=0,解得:x 1=1,x 2=2,检验:当 x=1 时,(x+2)(x2)=30
43、,当 x=2 时,(x+2)(x2)=0,所以分式方程的解为 x=149(2018贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种已知乙种树苗的价格比甲种树苗贵 10 元,用 480 元购买乙种树苗的棵数恰好与用 360 元购买甲种树苗的棵数相同(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共 50 棵,此时,甲种树苗的售价比第一次购买时降低了 10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过 1500 元,那么他们最多可购买多少棵乙种树苗?【分析】(1)可设甲种树苗每棵的价格是 x 元,则乙种树苗
44、每棵的价格是(x+10)元,根据等量关系:用 480 元购买乙种树苗的棵数恰好与用 360 元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买 y 棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500 元,列出不等式求解即可【解答】解:(1)设甲种树苗每棵的价格是 x 元,则乙种树苗每棵的价格是(x+10)元,依题意有= ,解得:x=30经检验,x=30 是原方程的解,x+10=30+10=40答:甲种树苗每棵的价格是 30 元,乙种树苗每棵的价格是 40 元(2)设他们可购买 y 棵乙种树苗,依题意有30(110%)(50y)+40y1500,解得 y11 ,y 为
45、整数,y 最大为 11答:他们最多可购买 11 棵乙种树苗50(2018桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用 40 天时间完成整个工程:当一号施工队工作 5 天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前 14 天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要 x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位 1),即可得出关于 x 的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量工作效率,即可求出结论【解答】解:(1)设二号施工队单独施工需要 x 天,根据题意得: + =1,解得:x=60,经检验,x=60 是原分式方程的解答:若由二号施工队单独施工,完成整个工期需要 60 天(2)根据题意得:1( + )=24(天)答:若由一、二号施工队同时进场施工,完成整个工程需要 24 天