1、单元检测二 方程(组)与不等式(组)(时间 90 分钟 满分 120 分)一、选择题(每小题 3 分,共 36 分)1.如果关于 x 的方程 mx-5=2x-2 的解为 x=1,那么 m 的值是(D)A.-1 B.1 C.-5 D.52.如图,下列四个天平中,相同形状的物体的质量是相等的,其中第 个天平是平衡的,根据第 个天平,后三个天平中不平衡的有(B)A.0 个 B.1 个 C.2 个 D.3 个3.某网上电器商城销售某种品牌的高端电器 .已知该电器按批发价上浮 50%进行标价,若按照标价的九折销售,则可获纯利润 350 元,现由于该商城搞促销,该电器按照标价的八折销售,则可获纯利润(B)
2、A.180 元 B.200 元 C.220 元 D.240 元4.若方程组 的解是二元一次方程 3x-5y-90=0 的一个解,则 a 的值是(C)A.4 B.5 C.6 D.75.如图, AB BC, ABD 的度数比 DBC 的度数的 2 倍少 15,设 ABD 与 DBC 的度数分别为 x,y,根据题意,下列的方程组正确的是(B)A. B.C. D.6.某农户,养的鸡和兔一共 70 只,已知鸡和兔的腿数之和为 196 条,则鸡的只数比兔多(B)A.20 只 B.14 只 C.15 只 D.13 只7.若 ab,则下列式子正确的是(B)A.-5a-5b B.a-3b-3C.4-a4-b D
3、. a411.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期 1 天,如果乙队单独做,要超过规定日期 4 天,现在由甲、乙两队共做 3 天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为(B)A.6 天 B.8 天 C.10 天 D.7.5 天12.设 x)表示大于 x 的最小整数,如2) =3,-1.4)=-1,则下列结论: 0)=0; x)-x 的最小值是0; x)-x 的最大值是 0; 存在实数 x,使 x)-x=0.5 成立; 若 x 满足不等式组 则 x)的值为 -1.其中正确结论的个数是(A)A.1 B.2 C.3 D.4导学号 92034157二、填空题(每小
4、题 3 分,共 24 分)13.已知关于 x 的不等式(1 -a)x3 的解集为 x1.14.已知 |2x-y|+ =0,则 的值为 1.15.若方程组 与 的解相同,则 a=33,b= .16.如图,10 块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为 x cm 和 y cm,则列出的方程组为 .17.已知不等式 2x-m-2,故不等式组的解为-2x1.把解集在数轴上表示出来为22.(每小题 6 分,共 18 分)解下列方程(组) .(1)1- = ;(2) - = ;(3)解 (1)1- = ,去分母,得 6-2(1+2x)=3(x-1),去括号,得 6-2-4x=3x
5、-3,移项、合并同类项,得 7x=7,解得 x=1.(2)去分母,得 x(x+2)+2=x2-4,去括号,得 x2+2x+2=x2-4,移项、合并,得 2x=-6,解得 x=-3,经检验 x=-3 是分式方程的解.(3) 2-3,可得 y=62-53=-3,把 y=-3 代入,可得 x=7,原方程组的解是23.(10 分)目前节能灯在城市已基本普及,某商场计划购进甲、乙两种型号节能灯共 1 200 只,这两种节能灯的进价、售价如表:进价(元 /只) 售价(元 /只)甲型 25 30乙型 45 60(1)如何进货,进货款恰好为 46 000 元?(2)如何进货,商场销售完节能灯时获利恰好是进货价
6、的 30%,此时利润为多少元?解 (1)设商场购进甲型节能灯 x 只,则购进乙型节能灯(1 200-x)只,由题意,得 25x+45(1 200-x)=46 000,解得 x=400.购进乙型节能灯 1 200-400=800(只).答:当购进甲型节能灯 400 只,购进乙型节能灯 800 只时,进货款恰好为 46 000 元.(2)设商场购进甲型节能灯 a 只,则购进乙型节能灯(1 200-a)只,由题意,得(30-25)a+(60-45)(1 200-a)=25a+45(1 200-a)30%,解得 a=450.购进乙型节能灯 1 200-450=750(只).5a+15(1 200-a)
7、=13 500(元).答:当商场购进甲型节能灯 450 只,购进乙型节能灯 750 只时利润为 13 500 元.24.(12 分)阅读材料:关于 x 的方程:x+ =c+ 的解为 x1=c,x2= ;x- =c- 的解为 x1=c,x2= ;x+ =c+ 的解为 x1=c,x2= ;x+ =c+ 的解为 x1=c,x2= ;根据以上材料解答下列问题:(1) 方程 x+ =2+ 的解为 ; 方程 x-1+ =2+ 的解为 . (2)解关于 x 的方程: x- =a- (a2) .解 (1)x 1=2,x2= x 1=3,x2=(2)两边同时减 2,变形为 x-2- =a-2- ,解得 x-2=
8、a-2,x-2= ,即 x1=a,x2= .导学号 9203415825.(12 分)某校开学初在家乐福超市购进 A,B 两种品牌的足球,购买 A 品牌足球花费了 2 500 元,购买 B 品牌足球花费了 2 000 元,且购买 A 品牌足球数量是购买 B 品牌足球数量的 2 倍 .已知购买一个 B 品牌足球比购买一个 A 品牌足球多花 30 元 .(1)购买一个 A 品牌、一个 B 品牌足球各需多少元?(2)该校响应“足球进校园”的号召,决定再次购进 A,B 两种品牌的足球共 50 个,恰逢家乐福超市对这两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了 8%,B 品牌足球按第
9、一次购买时售价的 9 折出售,如果该校此次购买的总费用不超过 3 260 元,那么,最多可以购买多少个 B品牌足球?解 (1)设购买一个 A 品牌足球需 x 元,则购买一个 B 品牌足球需(x+30)元,由题意得 = 2,解得 x=50,经检验 x=50 是原方程的解且符合题意,x+30=80.答:一个 A 品牌的足球需 50 元,则一个 B 品牌的足球需 80 元.(2)设此次可购买 a 个 B 品牌足球,则购进 A 牌足球(50-a)个,由题意得 50(1+8%)(50-a)+800.9a3 260,解得 a31 ,因为 a 是整数,所以 a 最大等于 31.答:此次最多可购买 31 个 B 品牌足球.